Impacts of Financial Factors on Business Cycle Fluctuations

Ashvin Ahuja, Suchot Piamchol, Paiboon Pongpaichet, Tanawat Ruenbanterng, and Surach Tanboon

Bank of Thailand

October 19-20, 2010
I. Overview of the paper

- Focus: balance sheet channel of monetary policy transmission
- Key features
 - Double financial accelerator: firms and banks
 - Integrated view of balance sheet channel: credit demand and supply
What this paper does cover

<table>
<thead>
<tr>
<th>Model features</th>
<th>BGG (1999)</th>
<th>Sunirand (2003)</th>
<th>This paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard monetary DSGE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Financial accelerator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firms’ balance sheet</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Banks’ balance sheet</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Open economy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade</td>
<td>x</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>Exchange rate</td>
<td>x</td>
<td>x</td>
<td>✓</td>
</tr>
</tbody>
</table>
What this paper does not cover

- Multiple financial accelerators
 - Bernanke (2007): firms, households, banks, nonbanks
- Disruption of financial intermediation & unconventional monetary policy
 - Gertler and Karadi (2009), Gertler and Kiyotaki (2010)
II. Model

Double financial accelerator
Key equations

- Firm’s balance sheet

\[Q_t K_t^D = B_t^D + N_t^D \]

- External finance premium

\[R_t^D - R_t = \left(\frac{Q_t K_t^D}{N_t^D + N_t^{BD}} \right)^\nu \]

\(Q_t \) = price of capital (firm’s assets)

\(K_t^D \) = domestic firm’s capital

\(B_t^D \) = nominal debt

\(N_t^D \) = firm’s net worth

\(N_t^{BD} \) = bank’s capital that implicitly supports lending to the domestic firm
Determination of external finance premium

Double financial accelerator

Three cases

1. $QK^D < N^D$
 - No need to seek external finance

Sunirand (2003)
Determination of external finance premium
Double financial accelerator

Three cases

1. $QK^D < N^D$
 - No need to seek external finance

2. $N^D < QK^D < N^D + N^{BD}$
 - Bank can satisfy firm’s demand for loans with own internal funds (BGG, 1999)

Sunirand (2003)
Three cases

1. $QK^D < N^D$
 No need to seek external finance

2. $N^D < QK^D < N^D + N^{BD}$
 Bank can satisfy firm’s demand for loans with own internal funds (BGG, 1999)

3. $QK^D > N^D + N^{BD}$

Sunirand (2003)
Endogenous firm’s net worth

- Instead of net worth being a fixed proportion of firm’s balance sheet
 \[N_t^D = \vartheta Q_t K_t^D \]

- Net worth depends on real developments that determine value of firm
 \[
 N_t^D = \phi_v V_t^D \\
 V_t^D = (1 - \delta) Q_t K_{t-1}^D + \left(Q_t^D Y_t^D - W_t L_t^D - P_t^M M_t^D \right) \\
 - \left(1 + R_{t-1}^D \right) B_{t-1}^D

 Q_t^D = \text{competitive price of the domestic good} \\
 L_t^D, M_t^D = \text{labor and imported inputs} \]
Banks

- Balance sheet
 \[B_t = B_t^B + N_t^B \]

- External finance premium
 \[R_t^B - R_t = \left(\frac{B_t}{N_t^B} \right)^{\nu^B} \]

- Endogenous bank capital
 \[N_t^B = \phi_v^B V_t^B \]
 \[V_t^B = \left[\left(1 + R_{t-1}^D \right) B_{t-1}^D + \left(1 + R_{t-1}^X \right) B_{t-1}^X \right] - \left(1 + R_{t-1}^B \right) B_{t-1}^B \]

\[B_t = B_t^D + B_t^X = \text{bank's assets} \]
\[B_t^B = \text{bank's external funds} \]
\[N_t^B = N_t^{BD} + N_t^{BX} = \text{bank capital} \]
III. Simulation results

Interest rate shock

An increase in policy rate reduces firm’s net worth, raises external finance premium, and amplifies investment’s fall and makes it more persistent.
A negative shock to firm’s net worth raises external finance premium and amplifies investment’s fall and makes it more persistent.
A negative shock to bank’s capital raises its external finance premium. Having borrowed from bank, firms in turn are required to pay higher premium, further amplifying and propagating a fall in investment.
IV. Reflections on recent crisis

- Elasticity of external finance premium with respect to net worth is key to understanding severity of feedback
- External finance premium is more sensitive to borrower’s financial position given an increase in
 - Probability of bankruptcy, raising expected monitoring costs
 - Subjective uncertainty—especially in crises
 - True financial positions and expected losses are not known (Levin, Natalucci, and Zakrajsek, 2004)
With a heightened sensitivity, net worth shock induces premium to rise more, causing investment to contract further.
Mishkin (2008): Policy flexibility

- Monetary policy must be at least as preemptive in responding to financial shocks
- Interest rate cuts shore up borrowers’ balance sheets, thereby dampening finance premium
- By reducing the likelihood of losses, monetary easing works to reduce uncertainty
V. Conclusions

- Framework to analyze how balance sheets of financial-constrained firms and banks amplify shocks and prolong business cycles
 - Double financial accelerator
- Useful tool to offer a deeper understanding of financial-real linkage
- Potential platform for incorporating elements of financial stability—such as firms’ leverage or bank capital—when calibrating monetary policy
Appendix 1: Model equations
Households

Consumption, saving, and labor supply decisions

\[E_0 \sum_{t=0}^{\infty} \beta^t \left[(1 - \chi) \log \tilde{C}_t - \varphi L_t^{1+\eta} \right] \]

subject to

\[P_t^D C_t + B_t^B \leq \left(1 + R_{t-1}^B \right) B_{t-1}^B + W_t L_t + \sum_j \Phi_j \]

Optimal consumption, saving, labor supply

\[\frac{1}{\tilde{C}_t} = \lambda_t P_t^D \]

\[\lambda_t = \beta E_t \lambda_{t+1} \left(1 + R_t^B \right) \]

\[\lambda_t Q_t^L = \varphi L_t^\eta \]
Households
Adjustment costs

- \(\tilde{C}_t \) is habit-adjusted consumption which depends on \(C_t \) and \(C_{t-1} \) and the parameter \(\chi \)

\[
\tilde{C}_t = \frac{C_t - \chi h_t}{1 - \chi}
\]

with \(h_t = (1 + \alpha) C_{t-1} \)

- When \(\chi = 0 \), household completely disregards past consumption
Households

Wage decision

$$
\min \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[(W_t - W_t^*)^2 + \xi^W (\Delta W_t - \Delta \bar{W}_{t-1})^2 \right]
$$

- Optimal wage setting

$$
W_t = W_t^* + \xi^W \left[- (\Delta W_t - \Delta \bar{W}_{t-1}) + \beta (E_t \Delta W_{t+1} - \Delta \bar{W}_t) \right]
$$
Households

Foreign-bond holding decision

\[
\max_{B^*_t} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \lambda_t S_t \left\{ B^*_t - \left[1 + \frac{\zeta_B^f}{2} \left(\frac{S_{t-1}B^*_{t-1}}{4Y^N_{t-1}} - \psi \right) \right] (1 + R^*_{t-1}) B^*_{t-1} \right\}
\]

- UIP condition

\[
R^B_t - R^*_t = \mathbb{E}_t dS_{t+1} + \zeta_B^f \left(\frac{B^f_t}{4Y^N_t} - \frac{\psi}{2} \right) + \nu
\]

with law of motion for \(B^f_t \)

\[
B^f_t = \left(1 + R^B_{t-1} \right) B^f_{t-1} - \left(P^X_t X_t - P^M_t M_t \right)
\]
Domestic wholesale good producing firms

Production decision

\[Y_t^D = \left(A_t L_t^D \right)^{\gamma_L^D} \left(M_t^D \right)^{\gamma_M^D} \left(K_{t-1}^D \right)^{1-\gamma_L^D-\gamma_M^D} \]

- Optimal demand for labor and imported intermediates

\[W_t L_t^D = \gamma_L^D Q_t^D Y_t^D \]

\[P_t^M M_t^D = \gamma_M^D Q_t^D Y_t^D \]

- Optimal demand for capital given financial frictions

\[1 + R_t^D = \frac{(1 - \gamma_L^D - \gamma_M^D) Q_{t+1}^D Y_{t+1}^D}{Q_t K_t^D} + (1 - \delta) \frac{Q_{t+1}^D}{Q_t} \]

with

\[R_t^D - R_t = \left(\frac{Q_t K_t^D}{N_t^D + N_t^{BD}} \right)^\nu \]
Domestic wholesale good producing firms
Determination of net worth

- Balance sheet
 \[Q_t K_t^D = B_t^D + N_t^D \]

- Endogenous net worth
 \[N_t^D = \phi_v V_t^D \]

with

\[V_t^D = (1 - \delta) Q_t K_{t-1}^D + Q_t^D Y_t^D - \left[W_t L_t^D + P_t^M M_t^D \right] \]

\[- \left(1 + R_{t-1}^D \right) B_{t-1}^D \]

\[= \left(1 + R_{t-1}^D \right) N_{t-1}^D \]
Export firms
Production decision

\[Y_t^X = \left(A_t L_t^X \right)^{\gamma_L^X} \left(M_t^X \right)^{\gamma_M^X} \left(K_{t-1}^X \right)^{1-\gamma_L^X-\gamma_M^X} \]

- Optimality conditions for export firms are similar to those for domestic firms
Capital producers

Setup

\[
\max_{l_t} E_0 \sum_{t=0}^{\infty} \beta^t \lambda_t \left\{ Q_t \left[(1 - \delta)K_t + F(l_t, l_{t-1}) - K_{t+1} \right] - P_t^D l_t \right\}
\]

- Rent capital from firms after used in production, \((1 - \delta)K_t\)
- Combine with the investment good, \(l_t\), it has purchased from retailer of final good to produce new capital
- Return \(K_{t+1}\) to the firms to be used in later production
Capital producers

Adjustment costs

\[F(I_t, I_{t-1}) = \left\{ 1 - \frac{\zeta^l}{2} \left[\frac{I_t}{I_{t-1}} - (1 + \alpha) \right]^2 \right\} I_t \]

- \(\zeta^l \) is investment adjustment cost parameter
- When \(\zeta^l = 0 \), \(F(I_t, I_{t-1}) = I_t \)
- For \(\zeta^l > 0 \), there will be real costs incurred
 - \(F > 0 \) when (gross) growth rate of investment, \(\frac{I_t}{I_{t-1}} \), is different from balanced growth rate, \(1 + \alpha \)
Capital producers

First-order condition

\[
\frac{Q_t}{P_t^D} = \left[F_1(l_t, l_{t-1}) \right]^{-1} \left[1 - \beta E_t \frac{\lambda_{t+1}}{\lambda_t} \frac{Q_{t+1}}{P_t^D} F_2(l_{t+1}, l_t) \right]
\]

\[
= \left[1 - \tilde{\zeta}' \frac{l_t}{l_{t-1}} \left(\frac{l_t}{l_{t-1}} - (1 + \alpha) \right) - \frac{\tilde{\zeta}'}{2} \left(\frac{l_t}{l_{t-1}} - (1 + \alpha) \right)^2 \right]^{-1} \times \left[1 - \tilde{\zeta}' \beta E_t \frac{\lambda_{t+1}}{\lambda_t} \frac{Q_{t+1}}{P_t^D} \left(\frac{l_{t+1}}{l_t} \right)^2 \left(\frac{l_{t+1}}{l_t} - (1 + \alpha) \right) \right].
\]

- The left hand side is Tobin's \(q \)
Banks

- **Balance sheet**
 \[B_t^D + B_t^X = B_t = B_t^B + N_t^B \]

- **External finance premium**
 \[R_t^B - R_t = \left(\frac{B_t}{N_t^B} \right)^{\nu^B} \]

- **Endogenous bank capital**
 \[N_t^B = \phi^B V_t^B \]
 \[V_t^B = \left[\left(1 + R_{t-1}^D \right) B_{t-1}^D + \left(1 + R_{t-1}^X \right) B_{t-1}^X \right] - \left(1 + R_{t-1}^B \right) B_{t-1}^B \]

- **Loans to domestic and export firms**
 \[\frac{B_t^D}{N_t^{BD}} = \frac{B_t^X}{N_t^{BX}} \]
Retailers of final goods

Domestic good: monopolistically competitive price setting

\[\min_{P^D_t} E_0 \sum_{t=0}^{\infty} \beta^t \left[(P^D_t - P^D_{t*})^2 + \zeta^D (\Delta P^D_t - \Delta \bar{P}^D_{t-1})^2 \right] \]

- Optimal price setting

\[P^D_t = P^D_{t*} + \zeta^D \left[- (\Delta P^D_t - \Delta \bar{P}^D_{t-1}) + \beta \left(E_t \Delta P^D_{t+1} - \Delta \bar{P}^D_t \right) \right] \]

with

\[P^D_{t*} = \mu^D Q^D_t \]
Retailers of final goods

Export good: perfectly competitive price setting

- Optimal price setting

\[Q_t^X = P_t^X \]

with

\[P_t^X = S_t P_t^{Xf} \]
Fiscal and monetary authorities

Government

Fiscal rule

\[P_t^D G_t = \rho^G \left(P_{t-1}^D G_{t-1} \right) + \left(1 - \rho^G \right) \left(\sigma Y_t^N \right) \]
Monetary policy rule

\[R_t = \rho^R R_{t-1} + \left(1 - \rho^R\right) \left[R^{ss} + \kappa \left(dP^D_{t+1} - \pi \right) \right] \]
Exogenous processes

\[
\begin{align*}
A_t &= A_{t-1} + \alpha + \varepsilon_t^A \\
T_t &= \rho^T T_{t-1} + \varepsilon_t^T, \quad \text{where } T_t \equiv P_t^{X*} / P_t^{M*} \\
dP_t^{M*} &= \pi^* + \varepsilon_t^{P^{M*}} \\
R_t^* &= \rho^{R*} R_{t-1}^* + \left(1 - \rho^{R*}\right) R_{ss*}^* + \varepsilon_t^{R*}
\end{align*}
\]
Market clearing conditions

Factor inputs

\[L_t = L^D_t + L^X_t \]
\[M_t = M^D_t + M^X_t \]
\[K_t = K^D_t + K^X_t \]

Domestic final good

\[Y^D_t = C_t + I_t + G_t \]
Steady-state conditions

Steady state is defined such that macro variables grow at constant rates

- Three key parameters determining steady-state growth rates
 1. Productivity growth rate (α)
 2. Target rate of inflation (π)
 3. Foreign inflation target (π^*)

In steady state

- Real variables grow at α
- Price variables grow at π
- Nominal variables (including financial variables) grow at $\alpha + \pi$
- Foreign export and import prices grow at π^*
- Exchange rate depreciates at the rate of $\pi - \pi^*$
Appendix 2: Calibration of model parameters
Steady-state parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Households</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>0.9968</td>
<td>Discount factor</td>
</tr>
<tr>
<td>δ</td>
<td>0.0105</td>
<td>Depreciation rate (4.2% per year)</td>
</tr>
<tr>
<td>η</td>
<td>3.0303</td>
<td>Inverse of Frisch elasticity</td>
</tr>
<tr>
<td>φ^L</td>
<td>1</td>
<td>Scaling parameter for labor disutility</td>
</tr>
<tr>
<td>μ^W</td>
<td>1.05</td>
<td>Wage markup</td>
</tr>
<tr>
<td>ψ</td>
<td>0.25</td>
<td>Ratio of foreign debt to nominal GDP</td>
</tr>
<tr>
<td>Firms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ^D</td>
<td>1.20</td>
<td>Price markup, domestic firms</td>
</tr>
<tr>
<td>γ^D_L</td>
<td>0.65</td>
<td>Labor income share, domestic firms</td>
</tr>
<tr>
<td>γ^D_M</td>
<td>0.15</td>
<td>Imported input income share, domestic firms</td>
</tr>
<tr>
<td>γ^X_L</td>
<td>0.60</td>
<td>Labor income share, export firms</td>
</tr>
<tr>
<td>γ^X_M</td>
<td>0.18</td>
<td>Imported input income share, export firms</td>
</tr>
<tr>
<td>ϕ_v</td>
<td>0.9874</td>
<td>Probability of firms surviving into next period</td>
</tr>
<tr>
<td>ν</td>
<td>0.0170</td>
<td>Elasticity of firms’ external finance premium</td>
</tr>
</tbody>
</table>
Steady-state parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ^B_v</td>
<td>0.9968</td>
<td>Probability of banks surviving into next period</td>
</tr>
<tr>
<td>ν^B</td>
<td>0.0003</td>
<td>Elasticity of bank’s external finance premium to bank’s capital-to-asset ratio</td>
</tr>
<tr>
<td>Government</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>0.20</td>
<td>Ratio of government expenditure to nominal GDP</td>
</tr>
<tr>
<td>π</td>
<td>0.0074</td>
<td>Inflation target (3% per year)</td>
</tr>
<tr>
<td>Exogenous processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.0059</td>
<td>Productivity growth rate (2% per year)</td>
</tr>
<tr>
<td>π^*</td>
<td>0.0074</td>
<td>Foreign inflation target (3% per year)</td>
</tr>
</tbody>
</table>
Dynamic parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Households</td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ</td>
<td>0.85</td>
<td>Consumption habit persistence</td>
</tr>
<tr>
<td>ζ_I</td>
<td>1.5</td>
<td>Investment adjustment cost</td>
</tr>
<tr>
<td>ζ_W</td>
<td>6</td>
<td>Wage adjustment cost</td>
</tr>
<tr>
<td>ζ_{B^f}</td>
<td>0.4</td>
<td>Interest rate premium on foreign debt holdings</td>
</tr>
<tr>
<td>υ</td>
<td>0.005</td>
<td>Differential between domestic and foreign interest rate</td>
</tr>
<tr>
<td>Firms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ζ_D</td>
<td>0.7</td>
<td>Degree of price rigidities</td>
</tr>
<tr>
<td>Government</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ^G</td>
<td>0.80</td>
<td>Persistence in government expenditure</td>
</tr>
<tr>
<td>ρ^R</td>
<td>0.90</td>
<td>Persistence in policy interest rate</td>
</tr>
<tr>
<td>κ</td>
<td>10</td>
<td>Responsiveness of policy rate to inflation</td>
</tr>
<tr>
<td>Exogenous processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ^{R^*}</td>
<td>0.8</td>
<td>Persistence in foreign interest rate</td>
</tr>
<tr>
<td>ρ^T</td>
<td>0.8</td>
<td>Persistence in terms of trade</td>
</tr>
</tbody>
</table>