Systemic Liquidity Shortages and Interbank Network Structures

Seung Hwan Lee
The Bank of Korea

Bangko Sentral ng Pilipinas International Research Conference:
Contemporary Challenges to Monetary Policy

29 February 2012

* This presentation represents the author’s personal opinions and does not necessarily reflect the view of the Bank of Korea.
Following the LEH bankruptcy, short-term wholesale funding markets suddenly dried up, which caused system-wide liquidity shortages (IMF 2010).

Interbank markets play a role as propagation channels of liquidity shocks, the entire banking system become exposed to the knock-on effects of liquidity shocks.

Previous studies focus on default contagion, while I emphasize the systemic nature of funding liquidity risk.

In this paper, we propose a method for calculating the systemic liquidity shortages and investigate the effect of interbank network structures on the systemic liquidity shortages.
Main Findings

- A greater imbalance in liquidity positions across banks tends to aggravate the liquidity shortage of a deficit bank.

- A deficit bank may suffer from liquidity shortages even without a direct deposit withdrawal.

- A core-periphery network with a deficit money center bank is most vulnerable to systemic liquidity shortages.

- A banking system becomes more vulnerable to liquidity shocks as its interbank network is more ill-matched.
Existing Literature on Network Analysis

- Graph theory-based network models

- Balance sheet-based network models
 - Furfine (2003), Upper and Worm (2004), Elsinger et al. (2006), Aikman et al. (2009)

- Most previous studies focus on interbank credit losses and default contagion among banks.
 - No consideration for liquidity shortages and liquidity contagion, such as sudden drying up of liquidity in interbank markets.
The knock-on process of liquidity shocks differs from a default shocks in two ways.

1. Default losses: debtors \rightarrow lenders

 Liquidity needs: lenders \rightarrow debtors.

2. Default contagion stops if no additional banks fail.

 Liquidity contagion continues until the initial liquidity needs are met by liquidating external assets.
A stylized bank’s balance sheet.

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sum_{j \in \mathcal{N}} b_{ji}$</td>
<td>$\sum_{j \in \mathcal{N}} b_{ij}$</td>
</tr>
<tr>
<td>q_i</td>
<td></td>
</tr>
<tr>
<td>z_i</td>
<td>d_i</td>
</tr>
<tr>
<td></td>
<td>e_i</td>
</tr>
</tbody>
</table>

Balance sheet identity

$$\sum_{j \in \mathcal{N}} b_{ji} + q_i + z_i = \sum_{j \in \mathcal{N}} b_{ij} + d_i + e_i.$$
Matrix representation of banking system

<table>
<thead>
<tr>
<th>Interbank assets</th>
<th>Interbank liabilities</th>
<th>Nonbank liabilities</th>
<th>capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 ... b_{1j} ... b_{1n}</td>
<td>d_1</td>
<td>e_1</td>
</tr>
<tr>
<td>:</td>
<td>: ... : ... :</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>i</td>
<td>b_{i1} ... 0 ... b_{in}</td>
<td>d_i</td>
<td>e_i</td>
</tr>
<tr>
<td>:</td>
<td>: ... : ... :</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>n</td>
<td>b_{n1} ... b_{nj} ... 0</td>
<td>d_n</td>
<td>e_n</td>
</tr>
<tr>
<td>Nonbank assets</td>
<td>Liquid</td>
<td>q_1 ... q_j ... q_n</td>
<td></td>
</tr>
<tr>
<td>Iliquid</td>
<td>z_1 ... z_j ... z_n</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A bank is said to face a liquidity shortage if its total liquidity needs l_i^n exceed its total liquid assets l_i.

\[l_i^s \equiv \max(0, l_i^n - l_i) \]

where

\[l_i^n = \sum_{j \in \mathcal{N}} \phi_{ij} \Delta l_j + \Delta d_i \]

and

\[\Delta l_i = \min \left[l_i, \sum_{j \in \mathcal{N}} \phi_{ij} \Delta l_j + \Delta d_i \right] \]
A simple banking system \((n = 2)\)

\[
\begin{array}{c|cc|c|c}
0 & \beta & \delta & e_1 \\
\alpha + \beta & 0 & 1 - \delta & e_2 \\
\gamma \delta & \gamma (1 - \delta) & & \\
z_1 & z_2 & & \\
\end{array}
\]

where \(\alpha (= 0.1)\): the excess funds of a surplus bank, \(\beta (= 0.05)\): cross holdings, \(\delta (= 0.5)\): the deposit share of a surplus bank, \(\gamma (= 0.1)\): the reserve ratio, \(\omega (= 0.1)\): the liquidity shock.
Liquidity shocks and liquidity shortages

Seung Hwan Lee
The Bank of Korea

Aggregate shocks

Idiosyncratic shocks to a surplus bank

Systemic Liquidity Shortages and Interbank Network Structures

29 February 2012
Parameter values and liquidity shortages

Reserve ratio

Deposit share

Net surplus funds

Cross holdings

Seung Hwan Lee The Bank of Korea
Systemic Liquidity Shortages and Interbank Networks
29 February 2012
Six Types of Interbank Network Structures

- Type I. A complete network

![Diagram of a complete network with nodes 1, 2, 3, and 4 interconnected]
Six Types of Interbank Network Structures

- **Type I. A complete network**

- **Type II. A disconnected network**
Type III. A circular well-matched network
Six Types of Interbank Network Structures

- **Type III. A circular well-matched network**

- **Type IV. A circular ill-matched network**
Six Types of Interbank Network Structures

- Type V. A core-periphery network with a surplus money center bank

![Diagram of Type V network]

3

1

2

4
Six Types of Interbank Network Structures

- **Type V.** A core-periphery network with a surplus money center bank

- **Type VI.** A core-periphery network with a deficit money center bank
Properties of Network Structures

<table>
<thead>
<tr>
<th>Network properties</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
<th>Type 4</th>
<th>Type 5</th>
<th>Type 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completeness</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Interconnectedness</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Matchedness</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Centeredness</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Type 1: complete, Type 2: disconnected,
Type 3: circular well-matched, Type 4: circular ill-matched,
Type 5: surplus bank-centered, Type 6: deficit bank-centered.
Network Structures and Liquidity Shortages

Type 1: complete, Type 2: disconnected, Type 3: circular well-matched, Type 4: circular ill-matched, Type 5: surplus bank-centered, Type 6: deficit bank-centered.
Liquidity risk might be, therefore, underestimated if it is assessed only by individual institution’s liquidity positions.

- A greater imbalance in liquidity positions across banks tends to aggravate the liquidity shortage of a deficit bank.
- A core-periphery network with a deficit money center gives rise to the highest level of systemic liquidity shortages.
- A banking system becomes more vulnerable to liquidity shocks as its interbank network is more ill-matched.

The role of systemic liquidity shortages on default contagion is left as a subject for future research.