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Forecasting the Volatility of
Philippine Inflation using GARCH Models

ABSTRACT

The study highlights the statistical procedure employed in developing a short-
term forecasting model that explores the volatility feature of Philippine inflation
from 1995 up to August 2007. To build such a model, we identify first the sta-
tionary series. Second, we specify the Autoregressive Moving Average (ARMA)
model then include the Seasonal ARMA (SARMA) model if seasonality is present,
to represent the mean component using the past values of inflation. Next, we in-
corporate the Generalized Autoregressive Conditional Heteroskedasticity (GARCH)
model to represent its volatility. Diagnostic tests and examination of forecast accu-
racy measures indicate that the specifications D(IR) (the first difference of month-
on-month inflation) as the stationary series, AR(1) and SMA(12) for the mean,
GARCH(0,1) or ARCH(1) for the variance with Student’s t distribution having fixed
degrees of freedom v = 10 for the errors, performs best in forecasting the volatility
of the inflation rate for the Philippines. Lastly, out of sample forecasts for the mean
and error variance of Philippine inflation from September 2007 to October 2007 are
achieved using dynamic forecasting.

Key words: C5, E3
JEL Classification: inflation, forecasting, model construction and estimation,

model evaluation and selection
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Forecasting the Volatility of
Philippine Inflation Using GARCH Models

Haydee L. Ramon∗

January 2008

1 Introduction

Autoregressive (AR), Moving Average (MA) and ARMA models are often very useful in
modeling general time series.1 However, they all have the assumption of homoskedasticity

(or equal variance) for the errors. This may not be appropriate when dealing with financial
market variables such as stock price indices or inflation rate. These financial market variables
typically have the following three characteristics which general time series models have failed
to consider:

1. The distribution of a financial time series Xt has heavier tails than normal.

2. Values of Xt do not have much correlation, but values of X2
t are highly correlated.

3. The changes in Xt tend to cluster. Large (small) changes in Xt tend to be followed by
large (small) changes, as documented by Mandelbrot (1963).

One of the earliest time series models allowing for heteroskedasticity or time-varying vari-
ance is the Autoregressive Conditional Heteroskedastic (ARCH) model introduced by Engle
(1982). The ARCH models have the ability to capture all the above characteristics in financial
market variables. Bollerslev (1986) extended this idea into Generalized Autoregressive Con-
ditional Heteroskedastic (GARCH) models which give more parsimonious results than ARCH
models, similar to the situation where ARMA models are preferred over AR models.

Since then, several variations of the GARCH models have been introduced. From [21],
these include:

1. ARCH-in-Mean (ARCH-M) model - presented by Engle, Lilien, and Robins (1987), which
is used in financial applications where the conditional variance is related with the mean.

∗Ms. Ramon is Acting Bank Officer III at the Economic and Financial Forecasting Group - Department of
Economic Research of the Bangko Sentral ng Pilipinas.

1ARMA models are used to describe the mean of the data. AR, MA, and ARMA models are expressed as the
weighted average of past observation, past errors and combination of past observation and errors respectively.
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2. Asymmetric ARCH model - described by Engle and Ng (1993), which is employed to
account for equities often observed with downward movements in the market which are
followed by higher volatilities than upward movements of the same magnitude. Two mod-
els that allow for asymmetric shocks to volatility are TARCH and EGARCH models.

3. Threshold ARCH (TARCH) - introduced independently by Zakoian (1990) and Glosten,
Jaganathan and Runkle (1993), which considers the leverage effect on the ARCH models
including the positive and negative terms on the conditional variance.

4. Exponential GARCH (EGARCH) - proposed by Nelson (1991), which implies that the
leverage effect is exponential.

5. SWARCH - presented by Hamilton and Susmel (1994), which combines the ARCH mod-
els with the Markov switching method, allowing a variety of different regime changes in
the ARCH models.

The following studies refer specifically to forecasting inflation in the Philippines:

1. Mariano [22] explains a statistical procedure for forecasting monthly inflation as mea-
sured by the changes in the CPI. The procedure used a price equation which was spec-
ified in terms of its own past values, and including cost-push and demand-pull factors.
The CPI series over the period January 1972 to March 1985 was fitted using the ARMA
process, through which short-term inflation forecasts were made from June to December
1985. This approach anticipates the subsequent work of Mariano in specifying the BSP’s
Single-Equation Model (SEM) for inflation forecasting.

2. Mariano, Dakila Jr. and Claveria [27] presented a structural long-term inflation forecast-
ing model for the Philippines. The forecasting model serves as a quantitative tool to
forecast headline and core inflation rates one to two years into the future. It consists of a
simultaneous system of 38 estimated equations using the annual data over 1971-1999.
Moreover, it provides more detail on the determination of prices in the economy.

The first paper used only ARMA models without the GARCH specification. The second
paper considered the structural type of forecasting model, which is used for long-term fore-
casting.

The current paper develops a short-term forecasting model that explores the volatility fea-
ture of Philippine inflation from years 1995 up to 2007. To build such a model, we specify first
an ARMA model, and then consider the SARMA model, if seasonality is present, to represent
the mean component using the past values of inflation.2 Next, we incorporate a GARCH model
to represent its volatility. After the models with significant terms had been derived, the models
were evaluated using static forecasting, and were then evaluated further with respect to pre-
dictive accuracy using the Diebold-Mariano (DM) test statistic. Once the best model has been
found, it can be integrated (mean and variance introduced into the model) and point forecasts
can be computed using dynamic forecasting. The GARCH terms representing the volatility of
the process are then computed for each of the point forecast.

2SARMA or Seasonal ARMA models are recommended for monthly or quarterly data with systematic seasonal
movements.[12] It can also be viewed as an extension of the ARMA process, containing only the weighted average
of seasonally-spaced past observations and errors.

BSP Working Paper Series No. 2008-01 2



3The first differences is equal to the difference of two consecutive year-on-year inflation, i.e. IRAug2007 −

IRJune2007 = D(IR)AugandJul2007.
4If the first differences is not mean stationary, we may consider taking the second differences which is equal

to the difference of the first differenced series.
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Figure 2: Line Graph of the Leveled Inflation Rate
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Figure 3: Line Graph for the First Differences of the Inflation Rate Series
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Figure 4: Correlogram of the Leveled Inflation Rate

Figure 5: Correlogram of the First Differences of the Inflation Rate Series

The stationarity condition of the series can be formally verified by using the correlogram5

and the unit root test (URT)6 for the leveled and first differences of the IR series.

5Correlogram is a pictorial representation that displays the autocorrelation and partial autocorrelation functions
up to a specified order of k lags. To test if autocorrelation coefficient ρ = 0 using the Bartlett’s Test (which
alternatively indicates stationarity if most ρs are equal to 0) [11], we consider the following: 1.H0: ρk = 0; 2.H1: ρk �=
0; 3.Test Statistic:

ρ̂k

1/
√

T
∼ N(0, 1); 4.Confidence Interval: (−zα/2

1√
T

, zα/2

1√
T

); 5.Decision: If the computed ρ̂k

lies outside the confidence interval then reject the hypothesis that ρ = 0. This means that there is strength in
the statistical relationship between ordered pairs of D(IR) separated by k periods. Otherwise, do not reject the
hypothesis; where ρk is the autocorrelation coefficient seperated by k time periods, T is the length of the series,
and zα/2 is the z-value with α/2 degrees of freedom.

6To test for nonstationarity γ = 0 using the Dickey-Fuller Test [11], we use the following: 1. Test Equation:
∆Yt = βt + γYt−1 + εt where βt is a constant; 2.H0: γ = 0 (series is nonstationary); 3.H1: γ < 0 (series is

stationary); 4.Test Statistic: τ =
γ̂

se(γ̂)
; 5. Decision: If |τ | is less than the absolute value of the MacKinnon critical

BSP Working Paper Series No. 2008-01 5



Forecasting the Volatility of
Philippine Inflation using GARCH Models

The results on the correlogram of the leveled inflation rate series in figure 4, shows stronger
evidence of non-stationarity since the autocorrelation coefficient function (ACF) of the residuals
does not quickly decay to zero. On the other hand, the correlogram of D(IR) in figure 5 is
consistent with mean stationarity because most of the values promptly decay to zero. However,
spikes at lags 1 and 12 are evident.

Next, we test for a unit root using the augmented Dickey-Fuller (ADF) statistic. As shown
in figures 6 and 7. IR is mean stationary at the 5% level of significance while D(IR) are mean
stationary at the 1% level of significance.7 Thus, we consider D(IR) as our stationary series in
the estimation of GARCH models.

Figure 6: Unit Root Test Output for the Leveled Inflation Rate Series

Figure 7: Unit Root Test Output for the First Differences of the Inflation Rate Series

BSP Working Paper Series No. 2008-01 6
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Figure 8: Model 1 Specification for the Mean Equation under the Method of Least Squares
using the Terms D(IR), AR(1), AR(12), MA(1), and MA(12)

Figure 9: Model 2 Specification for the Mean Equation under the Method of Least Squares
using the Terms D(IR), AR(1), MA(1) and MA(12)
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Figure 10: Correlogram Q-test of Residuals under Model 2

2.2 Stage 2: Estimation of GARCH Models

To generate parameter estimates for the GARCH model, we first construct ARMA and
SARMA models to estimate the mean component by analyzing the correlogram.8 As can be
seen in figure 5, stationary series D(IR) exhibited spikes on the terms AR(1), AR(12), MA(1),
and MA(12). The ordinary least squares estimates of those terms with spikes are shown in
figure 8. Non-significant terms (the ones with p-values not less than 0.10) are then removed
starting to the one with the highest p-value. This generates model 2 with terms AR(1) and
AR(12) for the mean equation as shown in figure 9.

value at α, do not reject the null hypothesis that the series is nonstationary, otherwise, reject the hypothesis that
the series is nonstationary; where ∆Yt = Yt − Yt−1 and εt is a white noise.

7The ADF test statistic is lower than their critical values at the given level of significance.
8The spikes exhibited on the correlogram provides a rough guide to ARMA terms selection.

BSP Working Paper Series No. 2008-01 8
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Figure 12: ARCH Test on the Residuals under Model 2
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To verify the adequacy of AR(1) and AR(12) terms of the mean equation, the (1) correlo-
gram Q-test,9 (2) Jarque Bera test10and (3) ARCH test11 are used to test the residuals.

The correlogram Q-test (figure 10), indicates that there seems to be serial correlation on
the residuals since the autocorrelations and partial autocorrelations at lags 4 to 12 and 16 are
significant.12 Also, if we look at the first p-value of 0.036 which is testing the null hypothesis
that correlations of residuals from lags 1 to 4 are all zero, we can see that it is less than 10%.
Thus, we reject Ho and say that at least one of these correlations is not zero. On the other
hand, the Jarque-Bera test as shown on the histogram and stats view of figure 11, somehow
suggests normality (p-value is not significant), specifically a slight positive skewness on the
residuals. Lastly, the output on the ARCH test in figure 12, signifies that we do not reject the
null hypothesis that there is no ARCH up to order q in the residuals because of the insignificant
squared residual term (p-value of 0.9792 is more than .10 level of significance).

Because of the result that serial correlation existed on model 2 when the correlogram Q-
test is performed, we need to do a reestimating procedure. We change from model 1, MA(12)
and AR(12) to SMA(12) and SAR(12) terms respectively, to take into account the seasonal
component that may be present in the model. The resulting equation, which we now call
as model 3, yielded an output as shown in figure 13. Then removing non-significant terms
starting to the one with the highest p-value, yielded model 4 with terms AR(1) and SMA(12)
for the mean, as shown in figure 14.

We now verify the validity of model 4 of the mean equation using three tests on the residu-
als. The correlogram Q-test of figure 15 indicates that there seems to be no serial correlation
on the residuals since the autocorrelations and partial autocorrelations at all lags are nearly
zero.13 Also the first p-value of 0.160 is greater than 0.10 which means that we do not reject Ho
and say that all correlations from lags 1 to 3 are all zero. Result of the Jarque Bera test statistic

9To test for the joint hypothesis of no autocorrelation up to order n using the Ljung-Box Test [11], we consider

the following: 1. H0:ρ1 = ρ2 = . . . = ρn = 0; 2. H1: There is a ρk �= 0; 3. Test Statistic: QLB = T (T +2)
n∑

k=1

ρ̂k
2

T − k
;

4. Decision: If the computed QLB exceeds the critical value from the χ2(n) from the table at the level α, reject the
null hypothesis that all autocorrelation coefficients up to order n are zero; otherwise, do not reject the hypothesis;
where n is the number of lags, ρ̂k is the kth autocorrelation, T is the number of observations.

10To test the hypothesis on the Normality of Residuals using the Jarque-Bera Test [11], we consider the fol-
lowing: 1. H0: Residuals are normally distributed; 2.H1: Residuals are not normally distributed; 3.Test Statistic:

JB =
n

6
[s2 +

(K − 3)2

4
] ∼ χ2(2); 4.Decision: If JB is greater than the critical χ2 value at a given level of signifi-

cance α, we reject the null hypothesis of normality; where n is the number of observations, s is the skewness, and
K is the kurtosis.

11To test the hypothesis of no ARCH up to order q in the residuals [12], we consider the following: 1. H0: There

is no ARCH up to order q; 2. H1: There is ARCH up to order q; 3. Test Regression: ε2t = β0 +

(
q∑

k=1

βkε2t−k

)
+ vt;

4. Test Statistic: Obs*R-squared = (No. of observations) x (R2 from the test regression); 5. Decision: If the p-value
is less than the level of significance α, then we reject the null hypothesis that there is no ARCH up to order q in
the residuals; where ε2t is a regression of the squared residuals on a constant and lagged squared residuals up to
order q, and vt is the residual of ε2t .

12p-values are less than 10% level of significance
13except at lag 4 with p-value equal to 0.039 which is less than 10% level of significance

BSP Working Paper Series No. 2008-01 10
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Figure 13: Model 3 Specification for the Mean Equation under the Method of Least Squares
using the Terms D(IR), AR(1), SAR(12), MA(1), and SMA(12)

Figure 14: Model 4 Specification for the Mean Equation under the Method of Least Squares
using the Terms D(IR), AR(1) and SMA(12)

BSP Working Paper Series No. 2008-01 11



Forecasting the Volatility of
Philippine Inflation using GARCH Models

Figure 15: Correlogram Q-test of Residuals under Model 4
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Figure 16: Histogram and Stats of Residuals under Model 4
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Figure 17: ARCH Test on the Residuals under Model 4

as shown on the histogram and stats view of figure 16 somehow suggests non-normality since
the statistic is large, and slight positive skewness on the residuals. Lastly, the output on the
ARCH test as shown in figure 17 signifies that we do not reject the null hypothesis that there
is no ARCH up to order q in the residuals because of the insignificant squared residual term
(p-value of 0.1778 is more than .10 level of significance).

GARCH(p, q) Type of Error Distribution
GARCH(0, 1) Normal Distribution
GARCH(0, 1) Student’s t with

fixed degrees of freedom (d.f.)
v = 10 (default value)

GARCH(0, 1) Generalized Error Distribution
(GED) with fixed parameter (f.p.)

r = 1.5 (default value)

Table 1: Significant GARCH(p, q) Models and their Error Distributions

The result of no serial correlation under the correlogram Q-test, using the AR(1) and
SMA(12) terms for the mean equation, indicates that we can now proceed with the estimation
of the conditional variance for the errors using GARCH. We limit the order of GARCH(p, q) to
4, that is we use different orders of p, q=0,1,2,3 and 4 or four months relationship of volatilities,
since GARCH is used for short-term forecasting. Incorporating the stationary series D(IR) and
the mean equation with terms AR(1) and SMA(12), we estimate a GARCH model by finding a
significant order combination under a specific error distribution.14 After testing different orders
of p and q, it was found that the significant orders at the 10% level includes GARCH(0, 1)15

14p-values should all be less than .10 level of significance and coefficient of the variance equation should all be
positive.

15GARCH(0, 1) is also equal to ARCH(1)

BSP Working Paper Series No. 2008-01 13
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Figure 18: GARCH(0,1) Volatility Model of the Inflation Rate assuming a Normal Distribution
for the Error Terms

assuming the error distributions in table 1. The output results are shown in figures 18, 19,
and 20 for verification.

2.3 Stage 3: Examination of Forecast Accuracy Measures

GARCH(p, q) Error Dist’n RMSE MAE MAPE
GARCH(0, 1) Normal 0.440042 0.319337 5.975077
GARCH(0, 1) Student’s t 0.437680 0.316931 5.941765

with fixed d.f. v=10
GARCH(0,1) GED 0.437332 0.316818 5.947739

with f.p. r=1.5

Table 2: Forecast Errors for the Significant GARCH(p, q) Models

To validate the goodness of fit of GARCH(0,1) model assuming normal, Student’s t with
fixed degrees of freedom v = 10 and GED with fixed parameter r = 1.5 distributions for the
error terms, we perform static forecasting on the models to show measures of forecast accu-
racy16 over the estimation period. Table 2 shows the summary results of forecast accuracy.
We observe that in terms of RMSE and MAE, GED with fixed parameter r = 1.5 formulates the
model with the smallest measure of forecast error, that is, the one with the most accurate fit

16As a general rule, the smaller the sum of the absolute errors
n∑

t=1

|εt| or the sum of the squared errors
n∑

t=1

ε2t ,

the more accurate the fit of the model. The following is a summary of statistical measures of forecast accuracy

of a model: 1. Mean Absolute Error or MAE =

n∑
t=1

|εt|
n

; 2. Mean of the Absolute Percentage Error or MAPE

BSP Working Paper Series No. 2008-01 14
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Figure 19: GARCH(0,1) Volatility Model of the Inflation Rate assuming a Student’s t with fixed
degrees of freedom v = 10 for the Error Terms

Figure 20: GARCH(0,1) Volatility Model of the Inflation Rate assuming GED with fixed
parameter r = 1.5 for the Error Terms

BSP Working Paper Series No. 2008-01 15
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of the time series model. MAE indicates that the average difference between the forecast and
the observed value of the model is 0.3168. However, GARCH(0,1) for the variance component
with an assumption of GARCH(0,1) assuming a Student’s t distribution with fixed d.f. v = 10 for
the error terms formulates the model with the smallest measure of MAPE. This implies that on
the average, the forecasts from the model are off by 5.9418% of the true value. If the standard
chosen for forecasting is a MAPE of 10%, then this model is doing well.

Error Distributions DM Test Statistic B

GED with fixed parameter r = 1.5 1.198866
vs. Student’s t with fixed d.f.v = 10

Normal vs. 2.132320
Student’s t with fixed d.f. v = 10

Normal vs. 1.295412
GED with fixed parameter r = 1.5

Table 3: DM Test Statistic B given Pairwise Error Distributions

We further evaluate predictive accuracy of the models using the Diebold-Mariano (DM) test
statistic.17 The table indicates that at a 95% confidence interval, we reject the null hypothesis
of no difference in the accuracy of the normal and Student’s t with fixed d.f. v = 10 error
distributions. The positive value of B = 2.1323, which is greater than the critical value of 1.96
in a normal table, indicates that the normal distribution has higher square error than Student’s t
with fixed degrees of freedom v = 10. On the other end, when Student’s t with fixed degrees of
freedom v = 10 vs. GED with fixed parameter r = 1.5 are compared together with the normal
vs. GED with fixed parameter r = 1.5 error distributions, we do not reject the null hypothesis
of no difference in the accuracy of the competing forecast models. These results direct us that
the Student’s t with fixed d.f v = 10 error distribution is the most adequate choice among the
significant error distributions. Although GED with fixed parameter r = 1.5 was found to have
the smallest measure in its forecast errors based on RMSE and MAE, we lay much emphasis
on the result of measuring predictive accuracy of the models through the DM test statistic. We
therefore reiterate our choice of the Student’s t with fixed d.f. v = 10 as the most adequate
choice for the variance of the error distribution of Philippine inflation.

Incorporating the most adequate choice for the volatility model, we now present the forecast
for the mean and error variance of the inflation rate, as shown in figure 21, using the in-sample

=

n∑
t=1

|εt|
Yt

n
; 3. Root Mean Square Error or RMSE =

√√√√√ n∑
t=1

ε2t

n
where εt is the forecast error in time period t, Yt is

the actual value in time period t and n is the number of forecast observations in the estimation period.
17To test the hypothesis of E(dt) = 0 using the Diebold-Mariano Test we consider the following: 1. H0: E(dt) =

0; 2. H1: E(dt) �= 0; 3. Test Statistic: B = d√
f̂
T

∼ N(0, 1); 4. Decision: If |B| is greater than the critical normal value

at a given level of significance α, we reject the null hypothesis of no difference in the accuracy of two competing
forecasts; where E(dt) is the expected loss differential, d is the sample mean loss differential, f̂ is the sample
variance of the sample mean loss differential and T is the number of ex post observations.
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Figure 21: GARCH(0,1) Model Forecast for the Mean and Error Variance of Inflation Rate
using the In-sample Observations under Static Forecasting

observations under static forecasting. The figure implies that volatile values are evident during
the years between 1995 to 1996 and 1997 to 1999. This is evident in the wide confidence
intervals on the GARCH model under the forecast of mean. For the year 2000 onwards,
however, we observe a stable and predictable inflation rate, as shown in the low values of the
forecast of error variance.

2.4 Stage 4: Dynamic Forecasting

To summarize, the stationary series D(IR), AR(1) and SMA(12) terms for the mean, and
GARCH(0,1) term for the variance assuming a distribution of Student’s t with fixed degrees
of freedom v = 10, formulate the most adequate model for the volatility of the inflation rate.
Thus, we can now extrapolate, that is, forecast the inflation rate beyond the historical data
in two months duration. We choose dynamic forecasting in extrapolation. Figure 22 shows
the forecasts for the mean and error variance of the inflation rate using the out-of-sample
observations under dynamic forecasting. The forecast values for the inflation rate, denoted
by IRDF, and its error variance, denoted by GARCHDF, are shown in table 4. The table also
includes the lower and upper bounds at the 80% and 95% confidence intervals of the inflation
rate considering the forecast horizon from September 2007 to October 2007.

Period IRDF GARCHDF 80% Confidence Interval 95% Confidence Interval
Low High Low High

2007:09 2.77860 0.15679 2.26729 3.28992 2.00172 3.55549
2007:10 2.83024 0.17149 1.97954 3.68095 1.53771 4.12278

Table 4: Forecast for the Inflation Rate including the Lower and Upper Bounds from September
to October 2007
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Figure 22: GARCH(0,1) Model Forecast for the Mean and Error Variance of the Inflation Rate
using the Out-of-Sample Observations under Dynamic Forecasting

The ex ante forecast implies that for September and October 2007, the inflation forecast
will be seen to rise slightly from 2.78% to 2.83% respectively. The projected confidence bands
for September 2007 implies that the inflation rate can be as low as 2.3% to as high as 3.3%
at the 80% confidence interval and as low as 2% to as high as 3.6% at the 95% confidence
interval. As can be noticed, we do not forecast for far duration because the volatility increases
rapidly and it becomes trivial.

The forecast for the variance of the errors or GARCHDF indicates an increasing trend,
that is, as the period lapses through time, the variance of the errors increases. The percent-
age change in the variance from September to October 2007 signifies an 9.37% percentage
increase.

3 Summary and Conclusions

This paper has proposed specifications for the mean, variance and error using ARMA,
SARMA and GARCH models to predict the volatility of Philippine inflation based on the monthly
data from January 1995 to August 2007.

The parameter estimation procedure started with transforming the IR data into a stationary
series. After investigating the ACF and PACF plots, and conducting a formal ADF test on
stationarity, it was shown that the first differences D(IR) was the stationary series.

To estimate the mean component of the IR series, we derived a tentative model (known
as model 1) using the least squares method and obtained the terms AR(1), AR(12), MA(1),
and MA(12) through the analysis of the ACF and PACF plots. Removing non-significant terms
starting to the one with the highest p-value yielded model 2 with terms AR(1) and AR(12).
However, when residual tests were conducted specifically the correlogram Q-test, serial corre-
lation existed so the conduct of a reestimating procedure was made. We changed from model
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Figure 23: Historical One-Month Ahead Forecasts of SEM, MEM and GARCH Models from
January 2005 to August 2007

1, MA(12) and AR(12) to seasonal terms SMA(12) and SAR(12) respectively and called it as
model 3. We subsequently removed non-significant terms to achieve model 4 for the mean
equation with terms AR(1) and SMA(12). We then verified the validity of model 4 using three
residual tests. The correlogram Q-test indicated no serial correlation on the residuals, thus we
proceeded to the next stage of examining the forecast accuracy measures.

Using the maximum likelihood method, we found that the smallest forecast error for RMSE
and MAE was GARCH(0,1) assuming GED with f.p. r = 1.5 a while the smallest forecast error
for MAPE was GARCH(0,1) assuming Student’s t distribution with fixed d.f. v=10. However,
when the Diebold-Mariano test was conducted to compare predictive accuracy of the models,
it was considered that the Student’s t with fixed degrees of freedom v = 10 was the most
adequate choice for the variance of the error distribution of Philippine inflation. We therefore
choose GARCH(0,1) assuming a Student’s t distribution with fixed degrees of freedom v = 10
as the final specification for the error variance.

To summarize, the stationary series D(IR), AR(1) and SMA(12) terms for the mean, and
GARCH(0,1) term for the variance assuming Student’s t with fixed degrees of freedom v = 10
for the error terms, yielded the most adequate model formulation for the volatility of Philippine
inflation during the period January 1995 to August 2007.
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Figure 24: Forecasting Properties of SEM, MEM and GARCH Models

It is important to note that we cannot draw general conclusions for the inflation rate in a
long-term horizon using ARMA, SARMA and GARCH models. Thus, GARCH models are es-
sentially limited to short-term forecasting only, up to about a two-month horizon. This suggests
that a GARCH model would have to be continually reestimated to consider the most recent
observations.

While the current BSP’s inflation forecasting models, such as the single equation model
(SEM) and multiple equation model (MEM) assume a constant variance for the errors, the
GARCH model developed in this paper allows for time-varying variance in the errors. During
certain periods of high volatility, the GARCH model can thus help complement the BSP’s cur-
rent set of models, since the actual value of inflation is closer to the GARCH forecasts than
SEM and MEM forecasts,18 as demonstrated in figure 24. In addition, when the forecasting
properties of the GARCH model were compared with the two other BSP models using the test
of Chong [10],19 as shown in figure 23, the results albeit preliminary showed great promise for
the use of the GARCH model in the forecasting mix of the BSP for inflation. At present, a more
comprehensive paper is being developed to further refine and strengthen the models. In such
case, GARCH model will be incorporated in the present forecasting models of BSP.

For now, the author hopes that this paper will serve as a guide for future studies in studying
the volatility of Philippine inflation including other economic variables of interest. One may
wish to consider other variance models such as TARCH, EGARCH, PARCH, and component
GARCH.

18SEM and MEM forecasts are actual forecasts as contained in the inflation projection memorandum submitted to
the Governor monthly, except on November 2005 and February 2006 in which RVAT adjustment was not considered
in the given MEM forecast data.

19The test, in the tradition of Chong and Hendry (1986), involves the regression of the actual values of the
given variable on the competing forecasts subject to the constraint that the sum of the coefficients is one. An
encompassing model is found if the coefficient of its forecast is the ONLY significant one in the regression equation.
This implies that all necessary information in forecasting the variable is contained in the model’s forecasts and the
others do not contribute significantly to forecast accuracy. If no encompassing model is found, an optimal forecast
combination can be formulated using the respective coefficients as weights.
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Appendix

A The GARCH(p,q) Framework

Subsection A.1 offers a description of the GARCH(p,q) model including its main component,
the conditional variance ht. Subsection A.2 presents simpler models of GARCH such as
GARCH(1,1), in which, each of its variable terms are interpreted. Lastly, subsection A.3 il-
lustrates the parameter estimation process assuming a normal distribution for the errors.

A.1 GARCH(p,q) Model

GARCH stands for Generalized Autoregressive Conditional Heteroskedasticity. To understand
what GARCH is, consider the meaning of its acronym word by word as described in [23]:

Generalized - It is developed by Bollerslev as a generalization of Engle’s original ARCH
volatility modeling technique [15].

Autoregressive - It describes a feedback mechanism that incorporates past observations into
the present.

Conditional - It implies a dependence on the observations of the immediate past.

Heteroskedasticity - Loosely speaking, we can think of heteroskedasticity as time-varying
variance.

GARCH then, as cited in [23], is a mechanism that includes past variances in the expla-
nation of future variances. More specifically, GARCH is a time series technique that allows
users to model and forecast the conditional variance of the errors. It is used to take into ac-
count excess kurtosis20 and volatility clustering21, two important characteristics of financial
time series.

To formally define GARCH, let ε1, ε2, . . . , εT be the time series observations denoting the
errors and let Ft be the set of εt up to time T , including εt for t ≤ 0. As defined by Bollerslev [8],
“the process εt is a Generalized Autoregressive Conditional Heteroskedastic model of order
p and q, denoted by GARCH(p, q), if εt given an information set Ft has a mean of zero and
conditional variance ht given by

ht = α0 + α1ε
2
t−1 + . . . + αqε

2
t−q + β1ht−1 + . . . + βpht−p

= α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjht−j . (1)

Note that the conditional variance ht is the main component of a GARCH model and is
expressed as a function of three terms namely:

20excess kurtosis is characterized as having a fat tail behavior [23]
21volatility clustering is a characteristic of a financial time series in which large changes tend to follow large

changes, and small changes tend to follow small changes in the time series data [28]
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α0 - a constant term
q∑

i=1

αiε
2
t−i - ARCH term

p∑
j=1

βjht−j - GARCH term.

We define ε2
t−i as the past i period’s squared residual from the mean equation while the

ht−j is the past j period’s forecast variance.The order of the GARCH term and ARCH term are
denoted by p and q respectively. The unknown parameters which needs to be estimated are
α0, αi and βj , where i = 1, . . . , q and j = 1, . . . , p. To guarantee that the conditional variance
ht > 0, it needs to satisfy the following conditions: α0 > 0, αi ≥ 0, and βj ≥ 0.”

Based on [12], “there are five distributions for the errors, εt commonly used when working
with GARCH models in EViews: Normal (Gaussian), Student’s t, the Generalized Error (GED),
the Student’s t with fixed degrees of freedom v, or the GED with fixed parameter r. The last
two error distributions are special cases of the Student’s t and GED wherein the user will have
the option to enter a value for the fixed parameter”. We now present the first 3 log-likelihood
functions denoted as lt for the error terms.

From [23], “if εt is normally distributed,

lt = −T

2
log(2π) − 1

2

T∑
t=1

log ht − 1

2

T∑
t=1

ε2
t

ht
(2)

where T is the sample size.

If εt is Student’s t,

lt = T log

[
Γ(v+1

2
)

π
1

2 Γ(v
2
)
(v − 2)−

1

2

]
− 1

2

T∑
t=1

log ht − v + 1

2

T∑
t=1

log[1 +
ε2
t

ht(v − 2)
] (3)

where T is the sample size and v is the degrees of freedom.”

Based on [2], “if εt is GED,

lt = T

[
log

r

λ
− (1 +

1

r
) log(2) − log(Γ(

1

r
))

]
− 1

2

T∑
t=1

∣∣∣∣( εt

λ
√

ht

∣∣∣∣r − 1

2

T∑
t=1

log ht (4)

where T is the sample size, Γ(·) is the gamma function, λ is a constant given by

λ =

[
2

−2

r Γ1

r

Γ(3

r
)

] 1

2

(5)

and r is a positive parameter governing the thickness of the tails of the distribution. When
r = 2, and λ = 1 then GED is the standard normal distribution”.
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A.2 GARCH(1,1)

According to [12], “the most widely used GARCH(p, q) model is the GARCH(1,1). This
model has the main features which are present in more elaborate models and often fits almost
well. [12] The specification of the model is given by

ht = α0 + α1ε
2
t−1 + β1ht−1. (6)

The conditional variance ht is the one-period ahead forecast variance based on past infor-
mation. It is a function of three terms:

α0 - a constant term

ε2
t−1 - the ARCH term, this is the news about volatility from

the previous period, measured as the lag of the
squared residual from the mean equation

ht−1 - the GARCH term, it is the last period’s forecast vari-
ance.

The (1, 1) in GARCH(1, 1) refers to the presence of a first-order GARCH term (the first
term in parentheses) and a first-order ARCH term (the second term in parentheses). We can
interpret the period’s variance as the weighted average of a long term average (the constant),
the forecasted variance from last period (the GARCH term), and information about the volatility
observed in the previous period (the ARCH term).”

A.3 ARCH(q)

From [15], “the ARCH model is a special case of a GARCH specification in which, there are
no GARCH terms in the conditional variance equation from (1). Thus ARCH(q)=GARCH(0, q).
The process εt is an Autoregressive Conditional Heteroskedastic process of order q or ARCH(q),
if ht is given by:

ht = α0 + α1ε
2
t−1 + . . . + αqε

2
t−q

= α0 +

q∑
i=1

αiε
2
t−i (7)

where q > 0 and α0 > 0, and αi ≥ 0 for i = 1, . . . , q. Again, the conditions α0 > 0 and αi ≥ 0
are needed to guarantee that the conditional variance ht > 0.

To carry out the process of parameter estimation, consider the simplest model which is the
GARCH(0,1) model, where ht is given by:

ht = α0 + α1ε
2
t−1.

′′ (8)
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Based on [29], “the parameters α0 and α1 can be approximated by maximum likelihood
estimation or MLE22. The likelihood L of a sample of n observations x1, x2, . . . , xn, is the joint
probability function p(x1, x2, . . . , xn) when x1, x2, . . . , xn are discrete random variables. If x1,
x2, . . . , xn are continuous random variables, then the likelihood L of a sample of n observa-
tions, x1, x2, . . . , xn, is the joint density function f(x1, x2, . . . , xn). Let L be the likelihood of a
sample, where L is a function of the parameters θ1,θ2,. . . , θk. Then the maximum likelihood
estimators of θ1,θ2,. . . ,θk are the values of θ1, θ2, . . . θk that maximize L. Let θ be an element
of Ω. If Ω is an open interval, and if L(θ) is differentiable and assumes a maximum on W , then

MLE will be a solution of the equation
∂L(θ)

∂θ
= 0.”

To illustrate MLE as shown in [21], “we let ε1, . . . , εT be the errors and Ft be the set of εt up
to time t which is assumed to be normally distributed. Then the joint density of the observations
ε1, . . . , εT is

f(ε1, . . . , εT ) =
T∏

j=2

f(εj |ε1, . . . , εj−1) · f(ε1). (9)

For k = 2, . . . , T , the conditional density is

f(εk|ε1, . . . , εk−1) =
1√

2π(α0 + α1ε
2
k−1

)
exp

{
− ε2

k

2(α0 + α1ε
2
k−1

)

}
. (10)

The marginal density of ε1 is dropped for simplicity, and the resulting likelihood function
becomes,

Lt(α0, α1) =
T∏

j=2

1√
2π(α0 + α1ε

2
j−1

)

exp

{
− ε2

j

2(α0 + α1ε
2
j−1

)

}
. (11)

The log likelihood function, neglecting the constant term is

lt(α0, α1) = −1

2

T∑
j=2

log(α0 + α1ε
2
j1

) +
ε2
j

α0 + α1ε
2
j−1

. (12)

We can find the estimates α̂0 and α̂1 by solving the derivatives of the log likelihood function
∂l

∂α0
= 0 and ∂l

∂α1
= 0 respectively.”

22The method of maximum likelihood is a general method of estimating parameters of a population by values
that maximize the likelihood (L) of a sample.
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