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Hong Kong banking sector as well as from external sources. For robustness,
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1 Introduction

This paper examines sources of contagion emanating within the Hong Kong
banking sector as well as external sources of contagion. For robustness, the
paper uses two measures of systemic risk for major Hong Kong banks. One is
based on Forecast Error Variance Decomposition (FEDV) from Vector Autore-
gressive (VAR) estimation of daily realized volatility. The other comes from
Delta Conditional Variance at Risk (ACoVar) analysis with quantile regres-
sion of weekly share-price changes. Our sample period covers the past twelve
years, encompassing the Global Financial Crisis, the downgrading of US Debt,
Brexit, increased trade tensions between the US and China, and the onset of
the COVID-19 pandemic.

We make use of recent advances in Machine Learning methods, in particular
Elastic Net with Cross Validation, for estimation, as well as Neural Networks for
dimensionality reduction. These methods are particularly useful for analysis of
data sets with a large number of regressors. The goal is to isolate which variables
serve well for out-of-sample prediction, not in-sample statistical significance,
while economising on the number of parameters.

Two questions take centre stage. Do any banks stand out as net transmit-
ters of risk to the banking system as a whole? Do any external factors emerge
as additional sources of systemic risk for the banking system in Hong Kong?
Controlling for financial market indicators and indices of Economic Policy Un-
certainty in the US and China, we find that measures of implied volatility on
Interest Rate Swap Options contracts from both the United States and Hong
Kong have strong effects on banking share price volatility. This result should
not be surprising since banks are among the largest participants in swap-options
markets.

There is a large literature on financial sector contagion. Yilmaz (2018), for
example, examined banking-sector connectivity in East Asia using the FEDV
method with realized volatility measures with daily data. On the other hand,
Adrian and Brunnermeier (2016) used quantile regression methods for estimat-
ing the transmission of risk with lower-frequency data based on return distri-
butions. We use the latter method as a robustness check on the results of the
former method.! This study builds on the research reported in these papers.?

Table 1 gives a summary of key statistics of bank share prices between Oc-
tober 2007 and December 2019. We examine eight banks: HSBC, China Con-
struction Bank (CCB), China International Trust and Investment Corporation
(CITIC), Industrial and Commercial Bank of China (ICBC), Dah Sing Bank
(DSBA), Bank of China Hong Kong (BOCHK), Standard Chartered (SC), and
Bank of China Hong Kong Limited Holdings (BOCHKH).

In contrast to our approach based on Machine Learning, in-sample methods based on
Granger causality have been used by Billio et al. (2012). Their approach is based on monthly
data. While it would be interesting to contrast our base results with this approach, the data
for some of the Hong Kong banks only begin in 2007 so that there would not be sufficient
data for a useful statistical comparison.

2This paper also has drawn on coding available on the GitHub site on Systemic Risk
maintained by Tommaso Belluzzo, https://github.com/TommasoBelluzzo/SystemicRisk.



For understanding the extent of the volatility over the sample period, we
normalise the share prices by the initial value of each banking share price in
October 2007 and take the logarithmic value of each price. Table 1 shows that
except for one bank, BOCHK (Bank of China Hong Kong), the mean is negative
over the full period. Standard Chartered (SC) and HSBC took the greatest hits
in terms of lower average values, while SC leads the pack in terms of the lowest
normalised values of the share prices.

Table 1: Statistical Summary of Banking Share Prices, 2007-2019

Mean  Median Max Min  Std.Dev.
HSBC -0.703 -0.695 0.013  -1.511 0.222
CCB -0.152 -0.132  0.251  -1.025 0.154
CITIC -0.269 -0.233 0.155 -1.188 0.179
ICBC -0.210 -0.193 0.139 -0.902 0.151
DSBA -0.376 -0.268 0.117 -1.632 0.327
BOCHK 0.133 0.168 0.705 -1.180 0.334
SC -0.724 -0.503  0.185  -1.796 0.504
BOCHKH -0.231 -0.219 0.209 -0.956 0.169

Figure 1 plots the normalised share prices of these banks over time. Not
surprisingly, the large drops took place after the start of the Global Financial
Crisis in 2008. We also see large drops in several banks at the time of Brexit
in 2016, and a more gradual decline after 2018, at the time of increasing trade
tensions between China and the United States.



Figure 1: Banking Share Prices, 2007-2019
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As noted above, our interest is not only in the transmission of systemic risk
within the banking sector, but also in the sources of such risk coming from
outside the banking sector. We focus on alternative measures of risk, one based
on measures of range volatility, and the other, Delta COVaR, conditional value
at risk, coming from quantile regression-based methods.

We show that a key market for transmitting risk to the Hong Kong banking
sector is the Swaptions Market. As noted above McNelis and Neftci (2004) and
Neftci (2004) drew attention to the importance of comparisons of the Swap-
tions Markets in Hong Kong and the United States for understanding overall
macroeconomic risk and liquidity.

Both risk and liquidity are latent variables, to be sure. We can only make
use of indirect measures for assessing their impact in macroeconomics and fi-
nance. A usual measure for overall risk and liquidity conditions, of course, is the
yield curve on sovereign bonds. However, as noted by Neftci (2004), Swaptions
markets provide more useful indicators than the yield curves. In particular,
Swaptions markets are more liquid than sovereign bond markets. Secondly,
bond trading data are not as homogeneous as swap market data. A third is the
data from bond markets include implicit options which distorts their pricing.

However, the most important reason for using Swaptions Market data is
that the government’s cost of borrowing is the least relevant cost for assessing
macroeconomic conditions. The relevant cost of funds is the one paid by the ag-
gregate private sector, after eliminating idiosyncratic default risk premia. This
is precisely the information we can obtain from Swaptions markets. Put another
way, the sovereign bond market provides information on aggregate liquidity, but



the Swaptions market provides information on the liquidity of particular assets
held by private-sector market participants.

Swaptions contracts take two forms. One is a payer contract, which gives
the owner the right to pay the fixed rate and receive the floating rate. The
other, a receiver contract, gives the owner the right to pay the floating rate and
receive the fixed rate. Banks usually purchase receiver swaps, mainly to reduce
the risk of early prepayment of mortgages when interest rates fall to very low
levels.

As Neftci (2004) noted, Swaptions contracts in Hong Kong are priced off the
United States swap curve. Differences between the prices (and implied volatili-
ties) are usually attributed to risks associated with the currency peg. However,
we show that there may be significant effects other than risks associated in the
currency peg that is involved in the USD-HKD swap differences, either in prices
or implied volatilities. In particular, these markets transmit risks to the banking
sector as a whole. This is the main contribution of this paper.

Figure 2 pictures the implied volatilities for the seven most-liquid Hong Kong
Swaptions contracts, while Figure 3 pictures the implied volatilities for United
States contracts with the same contract specification. For purposes of notation,
the contract “1M2Y” means a one month option on a two year swap, with a
total tenor of two years and one month.

Both figures show that the highest values of the implied volatilities took
place at the time of the Global Financial Crisis. However, for Hong Kong there
was noticeable volatility in 2012, 2016, and 2019 while the implied volatility
dynamics in the United States appears to be relatively smoother.

Figure 2: Hong Kong Swaptions Implied Volatilities
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Figure 3: United States Swaptions Implied Volatilities
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Table 2 gives a statistical comparison of the Swaptions implied volatilities
in Hong Kong and the United States. We see that for both Hong Kong and
the United States, the larger standard deviations of the implied volatilities are
for the one- and two-year maturities having a one-month or three-month option
contract.

Table 2: Statistical Comparison of Hong Kong and United States Swaptions
Volatilities

Hong Kong USA
Contract: Mean  Median  Std.Dev. Mean  Median  Std.Dev.
1m2Y 2.721 2.700 0.942 0.626 0.496 0.402
1m1Y 2.948 2.489 1.436  0.537 0.397 0.421
2Y10Y 2.266 2.205 0.604 1.067 1.001 0.237
10Y1Y 2.189 2.124 0.547 1.046 1.052 0.132
1Y5Y 2.339 2.251 0.603 0.960 0.886 0.286
1Y10Y 2.177 2.112 0.554 1.065 0.984 0.277
3m2Y 2.694 2.680 0.849  0.665 0.552 0.375

The next section describes the Forecast Error Variance Decomposition (FEVD)
method based on range volatility measures of risk, as well as the key results we
obtain from this method.. After that we discuss the results based on Delta
Conditional Variance at Risk (ACoVar). The final section concludes.

The bottom line of this paper is that Swaptions news from the United States
affects Hong Kong Swaptions market volatility. This volatility helps to forecast



risk in key Hong Kong banks. Beyond transmitting news from the United States
Swaptions market, however, the Hong Kong Swaptions volatilities provide infor-
mation over and above the information from commonly used indicators. Results
are consistent with Begenau et al. (2015): interest-rate derivatives provide im-
portant information on banking risk exposure. They are also consistent with
results obtained by Lai and McNelis (2020), who show another Hong Kong fi-
nancial market, the offshore CNH market for the RMB, is a key transmitter of
external uncertainty to onshore Chinese banking share-price volatility.

2 Range Volatility and Connectedness: FEVD

2.1 Definition of range volatility

We are interested in the day-to-day risk of these banks, how they transmit risk
to one another and how vulnerable they are to risk from within and outside of
Hong Kong. But first we have to find a measure of it. The realized daily range
volatility measure, due to Garman and Klass (1980), denoted by o{*, comes from
an approximation based on spreads between the daily opening (o) and closing
(c), as well as maximum (h) and minimum (1) indices, in natural logarithmic
values, of the share prices observed each day:

oft = 511(h —1)? — .019](c — 0)(h — I — 20) (1)
—2(h —0)(I — 0)] — .383(c — 0)?

This method was used by Diebold and Yilmaz (2014) and Yilmaz (2018) in
studies of financial and real business-cycle contagion. This method allows us to
approximate the daily realized volatility measure taken from daily measures of
variance based on real-time minute-by-minute data.

Figure 4 pictures the range volatility of the Hong Kong banks for the sample
period. We see that the range volatilities spiked at the period of the Global
Financial Crisis in 2008, as well as 2012 and 2016, following the downgrading
of United States debt and the news of Brexit. There is also a spike for some
banks in 2018, a time of increased trade tensions between the US and China.



Figure 4: Range Volatilities of Hong Kong Banks
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Table 3 gives a statistical summary of the range volatilities for the sample
period. The banks with the largest maximum values of the range volatilities are
CCB, BOCHK and BOCHKH, while SC has the largest standard deviation of
the range volatility measures. The range volatilities, of course, measure intra-
daily risk of the share prices, so it should not be surprising that the rankings
of the banks on this metric would differ from the rankings based on overall
share-price movements for the full sample. Following Yilmaz (2018), we use
this measure as our first proxy for risk.

Table 3: Statistical Summary of Range Volatilities

Mean  Median Max Min  Std.Dev.

HSBC 0.700 0.323 58.003  0.000 2.055
CCB 1.295 0.663 66.975  0.000 2.895
CITIC 0.188 0.099 11.243 0.000 0.404
ICBC 0.273 0.151 16.710 0.000 0.590
DSBA 0.567 0.231 62.505 0.000 1.608
BOCHK 1.115 0.584 50.445  0.000 2.089
SC 0.962 0.377 156.569  0.000 4.163
BOCHKH 1.047 0.592 35.924  0.000 1.717




2.2 Measuring interconnectedness: VAR specification

The goal of this paper is to estimate the interconnectedness among the range
volatilities of the Hong Kong banks and the implied volatility of the Hong Kong
Swaptions market, conditional on a set of control or exogenous variables. We do
this with the generalized Forecast Error Variance Decomposition (FEVD), de-
rived from VARX (Vector Autoregressive) estimation with exogenous variables.

2.2.1 Dimensionality reduction of implied volatility measures for
Hong Kong and United States

Given that we have eight banks, we wish to reduce the dimensionality of the
Swaptions volatilities for the Hong Kong and the United States. We can com-
press or reduce the dimensionality from the Swaptions with unsupervised learn-
ing. In this approach, input variables in this network are “"encoded"” by inter-
mediate logsigmoid units, in a “"dimensionality reduction"” mapping.

The usual way to reduce the dimensions when there are large number of re-
gressors is through Principal Components. We make use of Nonlinear Principal
Components. The key difference is summarized by Kramer (1991):

n”»”

While PCA identifies only linear correlations between variables, NLPCA
uncovers both linear and nonlinear correlations, without restriction
on the character of the nonlinearities present in the data. NLPCA
operates by training a feedforward neural network to perform the
identity mapping, where the network inputs are reproduced at the
output layer.

These encoding units are combined linearly to form H neural nonlinear principal
components. The H-units in turn are “"decoded"” by decoding logsigmoid units,
in a “"reconstruction mapping"”, which are combined linearly to “"regenerate"”
the inputs as the output layers. To be sure, it is not strictly required that such
networks have equal numbers in the encoding and decoding layers, but that is
the more commonly used approach.

This type of unsupervised learning is also known as “prepresentation learn-
ing”. As Kelleher et al. (2020) point out, the goal of this learning or estimation
is to create a new way to represent a larger data set, with the understanding
that this new representation will be more useful for later, usually supervised,
machine learning or estimation processes[see Kelleher et al. (2020), p. 599].

Such a system has the following representation, with EN representing an
“"encoding neuron"”, and DN a “"decoding neuron"”.

K
EN; =Y o xXs (2)
k=1
ENj = (1/(1 4 exp(—=ENj))) 3)
J
Hy, = Zﬂp,jEN; (4)



P
DN, =3 y,H, (5)
p=1

DN = (1/(1 + eap(~DN,) ©)
J
Xy =Y 0k;DN; (7)

Figure 5 gives a graphical representation of the unsupervised learning method.

Figure 5: Unsupervised Learning: Auto-Associative Mapping
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As we see in Figure 5, the inputs are the same as the targets or outputs,
80 it is essentially an identity function, as noted by Kelleher et al. (2020), and
the H-units in the middle layer, or bottleneck layer, can be viewed as a new
transformed representation of the original data set [see Kelleher et al. (2020),
p. 682].

One major advantage of the Nonlinear Principal Component approach is
that it can achieve the same explanatory power of the total variation in the
data with fewer parameters than the linear Principal Components. This is an
example of the property of such networks being universal approximators, as
noted by K.Hornik et al. (1989).

Figure 6 pictures the encoded volatility units for the two sets of implied
Swaptions volatilities for Hong Kong and the United States. We see, not sur-
prisingly, that the Hong Kong measure shows more volatility than the United
States encoded measure.
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Figure 6: Encoded Implied Volatility Measures: Hong Kong and United States
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2.2.2 Exogenous variables: macroeconomic indicators from the United
States

Following Adrian and Brunnermeier (2016), we use the following set of exoge-
nous variables or controls, representing United States monetary indicators, for
the VARX system. The variables are, (1) Fed Funds Rate; (2) the change in
the United States Treasury Bill rate; (3) the Credit Spread, defined as the dif-
ference between the yield on 10-year corporate bonds and the United States
Treasury 10-year bond; (4) the Liquidity Spread, defined as the difference be-
tween bid and ask spreads on interbank lending; (5) the TED spread, defined as
the difference between the 3-month Treasury bill rate and the LIBOR; (6) the
Yield spread, defined as the difference between rates of return on long and short
term Treasury bonds; (7) Dow-Jones Corporate Lending Excess Returns; (8)
Dow-Jones Real Estate Learning Excess Returns, and (9) the VIX or implied
volatility index on share prices.

Table 4 gives a statistical summary of the United States macroeconomic in-
dicators. Due to the Global Financial Crisis, we see sharp negative values for
the Excess Returns for Corporate and Real Estate lending. The VIX has a peak
value of 80 during this sample, again due to the Global Financial Crisis. Sim-
ilarly, the Credit Spread between ten-year corporate bonds and United States
Treasuries peaked at 6.16 percent.
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Table 4:

Fed Funds Rate
ATbill

Credit Spread
Liquidity Spread
TED Spread
Yield Spread

DJ Corp Ex Ret

DJ Real Estate Ex Ret

VIX

Statistical Summary of United States Indicators
Mean Median

0.747
-0.001
2.799
0.121
0.438
1.953
0

0
19.451

0.18
0
2.7
0.08
0.28
2

0

0
16.7

Std Dev.

0.972
0.043
0.786
0.145
0.469
0.949
0.004
0.014
9.283

Max

4.86
0.74
6.16
1.32
4.58
3.83

0.045
0.144
80.86

Min

0.04
-0.81
1.56
-0.19
0.09
-0.52
-0.04

-0.138

9.14

2.2.3 [Exogenous variables: economic policy uncertainty indices

To round out the specification of exogenous variables, we also include Economic
Policy Uncertainty Indices for China and the United States. The United States
Index is available at the United States St. Louis Federal Reserve website [see
Baker et al. (2021)], while the China index comes from Huang and Luk (2019).

Figure 7 pictures the evolution of these normalised Economic Policy Uncer-
tainty Indices during the sample period.

Figure 7: Economic Policy Uncertainty Indices: China and USA
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We see that the United States index has higher volatility than China at the
start of the sample with the onset of the Global Financial Crisis. However, both
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indices show spikes in 2012, the time of the downgrading of the United States
debt. China shows a higher spike in 2016, the time of Brexit and at the end of
the sample period

2.3 Estimation of the model

We estimate a VARX model with nine state variables, the range volatility for the
eight banks and the Hong Kong Swap Volatility index from the representation
learning, with five lags. The exogenous variables consist of the eight United
States macroeconomic indicators, and the two Economic Policy Uncertainty
Indices.

We estimate a VARX model with nine state variables, the range volatility
for the eight banks and the Hong Kong Swap Volatility index from the repre-
sentation learning, with five lags. The exogenous variables consist of the eight
United States macroeconomic indicators, the two Economic Policy Uncertainty
Indices and the United States Swap Volatility index from the representation
learning. The endogenous variables for the banks and the HK Swap Volatility
index from the representation have five lags.

The model has the following form, where Y; represents the nine state vari-
ables, X; 1 the set of eleven exogenous variables and U; the matrix of distur-
bance terms. The symbol L is the lag operator.

(I-0@L)Y;=TX,1+ U, (8)

Ur ~ N(0,%) (9)

The parameter matrix © is the set of coefficients for the lagged state vari-
ables, and I' the matrix of coefficients of the lagged control variables. There are
nine disturbance terms, distributed with mean zero and variance-co variance
matrix ¥. We do not rule out contemporaneous correlation in the shocks.

To measure inward and outward connectedness among the Banks and the
Hong Kong Swaptions market, following Diebold and Yilmaz (2012), we calcu-
late the asymmetric FEVD (Forecast Error Variance Decomposition) matrix,
given the controls. The FEVD matrix was obtained from the Generalized Im-
pulse Response analysis due to Pesaran and Shin (1998).

The model has 57 coefficients in each of nine equations, with five lags for each
of the nine state variables, plus the eleven exogenous variables (the nine United
States monetary conditions plus the two uncertainty indices) and a constant
term, for a total of 513 parameters. The total number of observations in the
sample is 2926 observations. The key problem, of course, for estimation of such
a model is over-fitting and the presence of too many nuisance parameters.

To reduce the number of coefficients we use the Elastic Net method based
on Zou and Hastie (2005):
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This method involves minimizing the sum of squared residuals with a penalty
term on the sum of the absolute values or squared values of the coefficients of
the model. The parameter set, denoted by 5, includes the elements of the ©
and I

For setting o = 1,the method reduces to LASSO (Least Absolute Shrinkage
Selection Operator), due to Tibshirani (2011), while & = 0 reduces to Ridge
Regression, due to Hoerl and Kennard (1970).

To find the optimal value of \,we use Cross Validation (CV), based on Zhang
and Yang (2015). With CV, we first select a grid of values for A, between
A = 0,which reduces to Last Squares and \*, the minimum value of A which sets
all of the coefficients 8; = 0.

We then select a set of out-of-sample Mean Squared Error measures, based
on holding out five times 20% of the sample for each specified A\ over the grid.
The optimal A\ minimises the average out-of-sample mean squared error.

Once the model is estimated by the Elastic Net with Cross Validation, we
extract information about the contagion of risk with the Forecast Error Variance
Decomposition matrix. It determines how much of the forecast error variance
of each of the variables can be explained by exogenous shocks to the other
variables after a given horizon. Since it is an asymmetric matrix, some variables
may have greater outward connectedness to the others, and thus may be strong
net transmitters of risk. Similarly other variables may be strong receptors of
risk.

To better capture the dynamics of the changing patterns of connectedness,
we estimate the VARX model both for the full sample as well as a moving
window regression. With the moving window regressions, we can approximate
more accurately the structural changes which took place, but also, as noted by
Granger (2008), better capture any neglected nonlinear relations. See Nagel
(2021) for further elaboration.

We show below that estimation with the EN with CV is a ruthless killer
of nuisance parameters. Those coefficients which survive are ones which re-
ally matter for out-of-sample forecasting accuracy. To the extent that we find
connectivity with the VARX after the application of the EN-CV, we can have
confidence that this is a robust form of connectivity measurement. Put another
way, after making use of the EN method with CV, we are creating a bias for
less rather than more connectivity, since this method zeros quite a few of the
coefficients.

2.3.1 Full sample estimation

From the full-sample estimation, we obtain information about the significant
net transmitters of systemic risk and the net receptors of system risk, as shown

14



in Figure 8.

Figure 8: Full Sample Information on Risk Transmission
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Full sample estimation shows that the two largest transmitters of risk are
two banks, CCB and BOCHKH. The bond-market Swaptions volatility plays
little or no role in the transmission of systemic risk. Furthermore, the overall
spillover index of the system is only .379. The spillover index, a measure of the
total cross effects of each variable, as a percentage of the total variance of all
the variables, is 37.9 percent. Moreover, the Elastic Net is ruthless in disposing
of useless parameters, only 103 parameters were left standing (not zeroed out).

Figure 9 pictures the Directional Chart, capturing the bivariate relations be-
tween the variables in the Forecast Error Variance Decomposition matrix. The
banks with the highest degree of connectivity are at the edges. We see that
BOCHK, CCB, ICBC, and CITIC have the greatest degree of inward connec-
tivity.
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Figure 9: Full Sample: Directional Chart

2.3.2 Moving-window estimation

Of course, during the period 2007-2020, there has been ongoing structural
change and, as noted above, the linear specification for the full sample omits im-
portant nonlinear dynamic relations. Table 5 pictures the results from a moving
window estimation with a moving-window sample of 250 observations.

From Table 5 we can see the extent of outward connectedness of the banks
and the Swaptions Market at different times. In terms of both mean and maxi-
mum values, the Hong Kong Swaptions market dominates as a source of systemic
risk transmission, followed by BOCHKH and HSBC. The table also shows that
the maximum net risk transmission took place in April 2011 for the Swaptions
Market, but later for BOCHKH (April 2015) and HSBC (October 2016). Given
that the international headquarters for HSBC is London, the timing correlates
with the onset of Brexit.
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Table 5: Moving Window: Net Connectedness

Mean  Median Max Min  Std.Dev. Date-Max
HSBC -0.152 -0.310 3.417 -0.993 0.736 13-Oct-16
CCB 0.194 0.211 2.598 -0.989 0.697 22-Aug-13
CITIC -0.670 -0.731 2.268  -0.998 0.371  28-Nov-14
ICBC -0.089 -0.318 2.904  -0.957 0.725 30-Jul-18
DSBA -0.532 -0.684 1.814  -0.994 0.426  25-Aug-17
BOCHK -0.289 -0.332 2.080 -0.982 0.455 11-Oct-11
SC -0.699 -0.849 0.906 -0.994 0.333 6-Aug-12
BOCHKH 0.255 0.082 4.141 -0.983 1.042 9-Apr-15
HKSw 1.982 1.422 7.029 -0.444 1.950 27-Apr-11

Figure 10 pictures the time-varying Spillover index for the system: the degree
of total variance explained by outward transmission to the total variance. We
see the jump in the index following the onset of the Global Financial Crisis,
from slightly below 50 percent to well over 80 percent. After that there were
fluctuations in the interconnectedness of share price volatility between 70 and
90 percent.

Figure 10: Moving Window: Time-Varying Spillover Index

2010 2012 2014 2016 2018

To understand further the important role of the Swaptions market as a
net transmitter of systemic risk, we show in Figure 11 the time-varying net
connectedness measures of the eight banks as well as the Swaptions market
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for the sample. While the Swaptions market had its maximum effect as a net
transmitter of risk shortly after the Global Financial Crisis, we see that it also
had dominating effects on systemic risk at other periods, namely after 2012, as
well as in 2018 and 2019. The other persistent strong transmitter of risk was
HSBC.

Figure 11: Time-Varying Measures of Net Connectedness
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Figure 12 shows the Directional Chart of the banks and Swaptions Market at
the end of the sample period. This chart shows the stronger and direct outward
influence of the Hong Kong Swap Market (HKSw) on the Hong Kong banks.
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Figure 12: Directional Chart with Moving Window Estimation
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Given the central importance of the Swaptions Market as a source of systemic
risk for the Hong Kong banks, a natural question to ask is which control variables
are the key factors influencing this market? Figure 13 shows the time-varying
coefficients of several control variables on the Hong Kong Swaptions Market
implied volatility measure, after estimation for each moving window with Elastic
Net and Cross Validation. It is clear that the most persistent and largest effects
from the set of controls come from the United States Swaptions Volatility.

Of course, these effects are not statistically significant in the classical in-
terpretation. However, we note that the Elastic Net estimation with Cross
Validation is a ruthless destroyer of coefficients. Coefficients that remain stand
out as effective parameters for enhancing the out-of-sample predictability of
the model at particular times. As seen in Figure 13, the time-variation of the
US Swaption Volatility is non-zero much more than the US VIX, and the US
and China indices of economic policy uncertainty The coefficients of the other
remaining controls are almost always zeroed out.
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Figure 13: Time-Varying Effects of Controls on Swaption Volatility
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3 ACoVaR Estimation

As a robustness check we make use of the ACovar method for assessing the
effect of the Swaptions market on overall risk in Hong Kong banking. This
method was developed by Adrian and Brunnermeier (2016). In the previous
analysis, we used range volatility as a proxy for risk. In the ACoVaR method,
risk is the probability of an outcome in the left tail of the distribution, measured
as a deviation from the median by more than 45 percent.

In this method, following Adrian and Brunnermeier (2016), we work with
weekly, rather than daily returns. We make use of quantile regression, due
to Koenker (2005), for assessing the probability of undesirable outcome or the
probability of deviating from the median by more than 45 percent. This method
involves the following steps:

1. Take the negative of the weighted returns (by market capitalization) of the
banking system returns, so that the 95% quantile is the lower 5% quantile
for 7 = .05

2. Do a quantile regression for 7 = .95 of the system return on the Swap
Volatility and the Controls. Obtain VaR._ g5,

3. Do a quantile regression for 7 = .50 of the system return on the same
variables. Obtain VaR,— 5

4. Calculate ACOVaR= VaR._ g5 — VaR,—5.
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5. Examine the effect of the Swap Volatility on the Conditional Value at
Risk.

Figure 14 pictures the weekly weighted return of the Hong Kong banks.

Figure 14: Hong Kong Banking Sector Weighted Share Market Returns
Hong Kong Weighted Bank Equity Weekly Returns
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Figure 15 pictures the ACoV aR estimates of the Hong Bank weighted results
with respect to the Swaptions volatility. The results show the probabilities of
the weighed return of the banking system falling below the median by more than
45 percent when the Swaptions volatility exceeds its median by more than 45
percent. Figure 15 shows that the probability is always above ten percent, rising
to a peak value of almost 18 percent in the years following the Global Financial
Crisis. We also see jumps in this probability following the downgrading of United
States debt in 2012 and after the start of Brexit in 2016.
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Figure 15: ACOVaR Estimates for the Hong Kong Banking System
A CoVAR for HK System Return
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Of course, we can use this method to evaluate the effects of each bank on the
system as a whole as well as the effects of the Swaptions market on individual
banking returns. However, the results show that the Swaptions market is a
significant determinant of risk, defined as a probability of returns falling in the
lower 5 percent tail of the distribution of returns, relative to the median.

Moratis and Sakellaris (2021) note that in many instances the ACoVaR
rankings of banks deviated from other metrics of risk transmission for the bank-
ing system. However, our results show that the results for the Swaptions market
are consistent with those obtained for range volatilities.

Of course, the range volatility and the ACoVaR methods interpret risk in
different ways. The former method understands risk in terms of daily move-
ments in volatility, while the latter method interprets risk as the probability
of an extreme event, of falling in the lower five percent tail of the distribution
of returns, relative to the median return. As noted above, the FEVD meth-
ods are based on daily observations while the ACoVaR method uses weekly
observations.

4 Conclusion

The results of this analysis show that information from the Swaptions market
volatility plays a key role for transmitting systemic risk to the Hong Kong
banking system. This is true when we measure risk as intradaily volatility in
share price movements or as the probability of an extreme event, when the share
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market returns fall by 45 percent or more below their median values.

The implied volatility of the Hong Kong Swaptions market does respond to
movements in the implied volatility of the United States Swaptions market, but
it is also an important source of predicting actual realized volatility in Hong
Kong bank share returns as well as more extreme risk, of returns falling below
the 5% tail in the overall distribution of returns, relative to their median value.

Of course, there are other indicators of banking sector risk such as the price
of Credit Default Swaps, suggested by Moratis and Sakellaris (2021). However,
since share holders are the ultimate risk holders, as residual claimants of bank-
ing assets in case of a crisis, we see this method as an effective measure for
understanding the dynamics of risk and its transmission in the financial system.
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