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Abstract

This paper compares two methods for assessing the contagion of risk
among ten Globally Significant International Banks, known as GSIBs,
listed on the New York Stock Exchange with daily data from 2007 to
2020. In particular we are interested in identifying the banks which are
the largest net sources or transmitters of risk to the banking system as
a whole. We also examine the role of regulatory interventions, in the
form of bank fines and BIS Bin Classification for capital adequacy. Under
alternative measures, the frequency and total amount of bank fines, as well
as the BIS Capital Adequacy, have statistically significant relationships
with only a few banks among the GSIB’s. We argue that our measures
of contagion can serve as useful tools for regulators for identifying the
sources of contagion within banking networks and make such regulatory
interventions more effective instruments for financial stability.

Key words: contagion, forecast-error variance decomposition, conditional value
at risk, Elastic Net estimation, Cross-Validation

1 Introduction

This paper focuses on the measurement of risk and the contagion or spread
of such risk among ten Globally Significant International Banks (GSIBs) listed
on the New York Stock Exchange. Given that there are different methods for
measuring risk and the contagion effects of such risk, do any of these ten banks
stand out, across various measures, as significant sources of contagion of such
risk across the banking sector? If so, do regulatory measures, in the form of
the frequency and amounts of bank fines or BIS Bin classifications for capital-
adequacy ratios, have any effect on banking sector contagion measures?

Risk, of course, is a latent variable, not directly observable but important,
for which we create proxy measures. One commonly used measure is variance or
volatility. For example, a return which has greater volatility, mutatis mutandis,
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has more risk than another variable with lower volatility. Usually variance is a
measure of the second moment of a series, much like the mean. To obtain mea-
sures which evolve over time, one measure is the conditional volatility obtained
from Generalized Autoregressive Conditional Volatility (GARCH) models, pi-
oneered by Engle (1982). Another approach for time-varying measures of risk
is implied volatility, obtained from pricing of assets on options markets [see
Beckers (1981)]. A third measure is realized volatility, obtained from standard
deviations measured from higher-frequency data, for use as a time-varying mea-
sure for daily or lower frequency data [see Andersen et al. (2003)]. A popular
approximation to the realized volatility measurement is range volatility, intro-
duced by Garman and Klass (1980). This measure makes use of opening, closing,
and high and low measures of an an asset price, and thus avoids the need to
delve into higher frequency data, such as minute-by-minute data, for obtaining
daily time-varying measures of volatility.

Diebold and Yilmaz (2013) have used these last measures of risk in a Vector
Autoregressive (VAR) model to assess the connectedness of risk among various
markets or financial units. From VAR estimation, with out-of-sample fore-
casting, they obtained the asymmetric Forecast Error Variance Decomposition
matrix. If the realized volatility of a unit has a larger own FEVD than another
unit, it is, by definition, harder to forecast and thus more risky. The operat-
ing assumption is that risk measures come from forward-looking estimates of
volatility. Similarly, if one unit has a high covariance with another unit, than
the other unit has with it, it is a net transmitter of risk to the other unit. With
this method, one can identify which units are net transmitters of risk to other
units, as well as to the system as a whole.

Another market measure of risk of particular assets comes from the Credit
Default Swap (CDS) markets. We examine the interconnections of risk premia
for these instruments. This market is relevant, of course, for bond holders rather
than share holders in the GSIB’s. Unlike the shareholders, they are not residual
claimants. However, the movements of such premia should move in tandem with
share-price range volatility.1

Mihai and Neagu (2011) examined the usefulness of these measures for
the risk of soverign government bonds for Romania. Relative to interest-rate
spreads, they found that these data provided little additional information for
financial stability analysis. However this does not mean that information from
CDS premia cannot service as robustness checks on alternative measures of
market risk.

However, as noted more that fifty years ago by Rothschild and Stiglitz (1970),
the relationship between volatility and various forms of risk, is more complex.
Risk is not only a measure of the width of a probability distribution. We are
not at risk of outcomes on the right tail, but we are at risk for down-side
events. Put another way, do we treat upside outcomes equally as we do downside
risk? Rather than using overall volatility measures, an alternative is to use

1Since data are not available for the full set of the listed GSIB’s for CDS premia, we
compare the results for range volatility and CDS premia for ten banks, for which we have
realized volatilities and CDS premia.
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quantile regression to obtain a probability, for given factors, of landing below
critical values on the left tail of the distribution of returns [see, for example,
Chiang and Li (2012)]. Adrian and Brunnermeier (2016) extended this approach
with a definition of risk as the probability measure of how far an outcome
deviates from the median outcome. From this, they obtained, with quantile
regression a measure of how one return affects the probability of the market as
a whole deviating from the median return. They call this estimate ∆Covar ,
where Covar is Conditional variance at risk. As a further robusteness check on
the Diebold-Yilmuz range volatility measures, we also examine the inter-bank
transmission of risk with this measure.

The next section summarizes the data and the controls we use for the ten
GSIB’s banks over the period 2007-2021. In succeeding sections, we apply our
two methods, FEVD (for both range volatility and CDS premia) and ∆Covar.
Then we compare the results for the overall sample and with time-varying pa-
rameter estimation. The final section is the conclusion.

2 The GSIB: Risk Measures and Control Vari-
ables

Table 1 lists the ten GSIB’s we use for our study, with the median, max and min
values for the full period. We normalize each series by dividing the daily index
values by the first observation of each index, and then take natural logarithms.
We see over this period that for most of the banks, the mean and median returns
have been negative, due to the Global Financial Crisis in 2008. There are some
exceptions such as J.P Morgan Chase and Wells Fargo. The Royal Bank of
Scotland had the most negative value for the mean change relative to the initial
value.
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Table 1: GSIB Returns and Credit Deault Swap (CDS) Premia 2007-2020

GSIB
Re-
turns

CDS Premia

Code Name Type3* Mean Median Max Min Mean Median Max Min

BAC Bank of America -0.304 -0.280 0.438 -2.378 0.941 0.804 2.571 -0.170

BK Bank of New York Mellon -0.290 -0.275 0.138 -0.923 1.205 1.117 2.690 -0.059

BCA Barclays -0.605 -0.551 0.022 -2.558 1.087 1.047 2.199 -0.004

BBVA Banco Bilbao Vizcaya Argentaria -0.651 -0.639 0.034 -1.715 0.983 0.826 2.833 -0.062

C Citigroup -0.604 -0.455 0.000 -3.664 0.940 0.918 2.037 -0.002

GS Goldman Sachs -0.248 -0.220 0.106 -1.367 0.657 0.537 2.251 -0.256

JPM JP Morgan Chase 0.328 0.323 1.054 -0.948 0.651 0.616 1.830 -0.239

MS Morgan Stanley -0.269 -0.212 0.427 -1.961 0.736 0.568 3.173 -0.301

SAN Santander -0.426 -0.409 0.138 -1.458 1.116 1.064 2.638 -0.301

WFC Wells Fargo 0.481 0.593 1.053 -1.191 0.859 0.769 2.344 0.000

*Unless noted, listed on the NYSE.

The weighted weekly returns for all ten appear in Figure 1. We see the
greatest volatility at the time of the Global Financial Crisis, but also in 2012,
at the time of the downgrading of the US debt, and at the start of the COVID19
period.
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Figure 1: Weighted Weekly Changes in Market Capitalization
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For understanding the interaction among these banking units we make use
of the control variables listed in Table 2. These variables were used by Adrian
and Brunnermeier (2016) in their approach to contagion. The mean and median
values of the change in the Tbill are practically zero. We also see drastic changes
in the spreads as well as in corporate and real estate excess returns over the
sample period.

Table 2: Control Variables

Mean* Median Std Dev. Max Min

Fed Funds Rate 0.724 0.170 0.955 4.860 0.040

∆Tbill -0.001 0.000 0.084 3.000 -0.895

Credit Spread 2.798 2.700 0.771 6.160 1.560

Liquidity Spread 0.114 0.080 0.148 1.320 -0.870

TED Spread 0.429 0.270 0.462 4.580 -0.260

Yield Spread 1.857 1.930 0.988 3.830 -0.520

DJ Corp Ex Ret 0.000 0.000 0.004 0.045 -0.040

DJ Real Estate Ex Ret 0.000 0.000 0.014 0.144 -0.138

VIX 20.157 17.135 9.916 82.690 9.140

*Percentage values.

Table 3 summarizes the regulatory experience of the GSIB’s during the sam-
ple period in terms of the frequency and amount of bank fines as well as the
respective maximum BIS Bin Classification (ranging form 1 to 4) for capital
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adequacy ratios.2

We put in bold the numbers for the top five banks. BAC leads the pack for
the largest individual fine of $16 billion in August 2014. It also leads in terms
of total fine amounts and frequency of fines during the sample period. JPM
is not far behind, and is also in the highest Bin for the BIS ratios. However,
WFC, which is second in frequency of fines and among the top five GSIB’s in
total fines, is in the lowest BIS bin.

We also note that some of the maximum value fines took place within three
years after the GFC. After that period, many of the maximum fines were asso-
ciated with the LIBOR manipulation scandal.3

Table 3: GSIB Regulatory Experience

Fine History BIS

Bank Name: Maximum Value Date of Fine Total Fine Amount Frequency Bin

BAC $16,650,000,000 21-Aug-14 $60,130,305,938 143 3

BK $714,000,000 19-Mar-15 $1,190,079,484 17 2

BCA $2,000,000,000 29-Mar-18 $4,101,908,033 24 3

BBVA $27,000,000 21-Dec-16 $38,587,250 6 1

C $7,000,000,000 14-Jul-14 $14,335,859,039 24 4

GS $5,060,000,000 11-Apr-16 $9,437,424,794 21 2

JPM $13,000,000,000 19-Nov-13 $26,398,442,855 99 4

MS $2,600,000,000 11-Feb-16 $5,112,697,271 90 2

SAN $550,000,000 19-May-20 $637,058,281 19 1

WFC $5,342,200,000 9-Feb-12 $19,280,766,695 117 2

The question of this paper: given the controls, do any of the banks among the
GSIB’s stand out as the major sources of systemic risk for the weighted returns
of the banking system as a while? Secondly, do regulatory interventions, in the
form of the size and frequency of fines, and BIS bin classifications, have any
relation to banks which are net sources of contagion among the GSIB’s?

3 Method of Analysis

In this section we briefly summarize the FEVD and the ∆Covar methods for
identifying which banks among the GSIB’s are the major sources of risk, con-
ditional on the controls

3.1 FEVD Method

The realized daily range volatility measure, due to Garman and Klass (1980)de-
noted by σR

t , comes from an approximation based on spreads between the daily

2The BIS Basel III classifications began after the start of the sample, in 2013.
3See https://en.wikipedia.org/wiki/Libor scandal
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opening (o) and closing (c), as well as maximum (h) and minimum (l) of the
natural logarithmic values of the share prices observed each day.

ˆσR
t = .511(h− l)2 − .019[(c− o)(h− l − 2o)−2(h−o)(l−o)]− .383(c−o)2 (1)

For the FEVD method, we estimate a VAR-X model for the ten banks with
daily data with five lags. We also have as “controls” the nine controls, for the
following VARX model:

[(I −Θ(L)]Yt = ΓXt−1 + Ut (2)

Ut ∼ N(0,Σ) (3)

where the parameter matrix Θ is the set of coefficients for the lagged state
variables, and Γ the matrix of coefficients of the lagged controls on the current
dependent variable. The matrix U is the n by 10 set of shocks, which is dis-
tributed with mean zero and variance-co variance matrix Σ. We rule out auto
correlation but not contemporaneous correlation in the shocks.

To reduce the number of coefficients we use the Elastic Net method based
on Zou and Hastie (2005):

βEnet =
Min

β


T∑

t=1

(
yt −

∑
i

βixit

)2

+ λ

k∑
i=1

[
(α|βi|) + (1− α)β2

i

] (4)

This method involves minimizing the sum of squared residuals with a penalty
term on the sum of the absolute values or squared values of the coefficients of
the model, β,which capture the elements of the Θ and Γ. For setting α = 1,the
method reduces to LASSO (Least Absolute Shrinkage Selection Operator), while
α = 0 reduces to Ridge Regression.

To find the optimal value o λ,we use Cross Validation (CV). With CV, select
a grid of values for λ, between λ = 0,which reduces to Last Squares and λ∗,
the minimum λ which sets all of the coefficients βi = 0. We then select a set of
out-of-sample Mean Squared Error measures, based on holding out 20% of the
sample for each specified λ over the grid. The optimal λ minimizes the average
out-of-sample mean squared error.

For analysis of the CDS premia, the optimal lag length is much shorter, with
a lag length of two, for ten state variables and the same controls. We apply the
Elastic Net estimation method to these data.

Once the model is estimated by the Elastic Net, we can extract information
about the contagion of risk with the Forecast Error Variance Decomposition.
The estimated parameters do not have any information by themselves. We are
not interested in tests about specific values of any of the parameters. We use the
estimated variance-covariance matrix of the estimated shocks to forecast each of
the variables for 15 days forward. It determines how much of the forecast error
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variance of each of the variables can be explained by exogenous shocks to the
other variables after a given horizon. It is an asymmetric matrix, so that one
variable may have greater outward connectedness to the others and thus may
be a major source of systemic risk.

It should be noted that by reducing the number of coefficients, the use
of the Elastic Net estimation biases the results toward less interconnectedess
rather than more. Thus the results which emerge from the FEVD analysis
based on Elastic Net estimation represent significant measures of interconnect-
edness, since these results come from parameters which have survived a thorough
winnowing process.

To better capture the dynamics of the changing patterns of connectedness,
we estimate equation (2) for the full sample and then as a rolling window re-
gression. In this way, the linear specification not only is able to approximate
more accurately the structural changes which took place in the financial system
during the estimation period, but also, as noted by Granger (2008), capture the
effects of any neglected nonlinear relations. See Diebold and Yilmaz (2012) for
further elaboration.

3.2 ∆Covar Method

One way to evaluate risk in financial regression is through quantile regression.
We can use this tool to predict Value at Risk (VaR) from a given probability
distribution.4 VaR in the above distribution is the value of the returns at the
lowest 5% probability in the left tail of the distribution. Simply multiply the
value of the market capitalization and this value, and we have an estimate of
the VaR for the Market at the 5% probability. We can forecast the VaR from a
set of covariates or x-variables with Quantile Regression.

In Linear Least squares (OLS), with an intercept, we fit the regression line
through the mean of the dependent variable. In quantile regression, for a given
probability τ , we fit the regression line through the value of the dependent
variable at the quantile τ. We find the parameters by minimizing the sum of
absolute deviations, rather than squared deviation. For predicting the me-
dian, we set τ = .5.

The ∆Covar method is an application of quantile regression due to Adrian
and Brunnermeier (2016). The method involves the following steps:

1. Take the negative of the weighted returns of the banking, except for bank
(i), so that the 95% quantile is the lower 5% quantile for τ = .05,

2. Do a quantile regression for τ = .95 of the weighted market returns on
bank(i) returns and the controls. Obtain V aRi

τ=.95,

3. Do a quantile regression for τ = .50 of the market returns on bank(i)
returns and the controls. Obtain V aR,

4. Calculate △CoV ar(i)= V aRi
τ=.95 − V AaR,

4Note that VAR denotes Vector Autoregressive Model while VaR is used for Value at Risk.
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5. Repeat for all of the banks.

We then have a measure of the relative importance of each bank to the overall
weighted market risk of the system as a whole.

The common sense of this method: it tells us how much returns of Bank (i)
put the system at risk of diverging by 45% below the median. It will tell us
which banks play stronger roles in putting the system at such risk, more than
other banks.

For purposes of this analysis we will examine how each of the ten banks
affect the risk of the market return.

4 FEVD Results on Contagion: Range Volatil-
ity

4.1 Normalized range volatility

The median range volatility for all of the banks, calculated from formula (2),
appears in Figure 2. The volatilites are normalized logrithmic values of the
Garmin-Klass calculations. Diebold and Yilmaz (2012) suggested the logarith-
mic transformation of these values. The normalization between [0,1] allows
faster convergence during the estimation process.

The calculated volatility is largest around the time of the Global Financial
Crisis. However, while volatility diminished after 2010, it has by no means dis-
appeared. There were jumps in volatility values at the time of the downgrading
of US Debt in 2012, at the time of Brexit in 2016, the incipient trade tensions
with China in 2019 and of course in 2020 at the time of the COVID19 pandemic.
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Figure 2: Median Range Volatility of the GSIB’s

4.2 Full-sample estimation results

The Net Connectedness measures of the GSIB’s, based on full-sample estimation
with Elastic Net and Cross Validation, appears in Figure 3. This figure shows
that BCA and BAC, followed by CS and SAN, have outward connectedness.
The overall spillover index for the full sample, based on the Forecast Error
Variance-Decomposition matrix, is .8651. This index is defined as the sum of
the elements of the matrix, net of the diagonal elements, relative to the sum
of all of the elements. This value is consistent with a relatively high degree of
connectivity among the ten GSIB’s.

The bi-variate pattern of connectivity among the GSIB’s is pictured in the
GSIB Network in Figure 4. Figure 3shows the relative strenth of outward and
inward connectedness for each bank with the system as a whole. Figure 4 shows
the bivariate system of connectivity. The banks in the center of the network
chart, BBVA and BCA, have the largest number of bivariate connections within
the system as a whole. BCA stands out in both figures for strength of outward
connectedness as well as number of bivariate connections.

4.3 Results with rolling-window estimation

Of course, as noted above, some banks may have been more important at specific
times and less important at other times. For this reason we make use of rolling-
window estimation. Figure 5 pictures the mean values over the sample with a
moving window of size 300. The results are broadly consistent with full-sample
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Figure 3: Range Volatility Net Connectedness, Full-Sample Estimation

Figure 4: Range Volatility Network and Clustering: Full-Sample Estimation
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Figure 5: Net Connectedness: Mean of Moving Window

estimation with BCA and BAC standing out as the banks with the largest
outward-connectedness on average.

To explore further the dynamics of banking connectedness, we show in Table
?? the maximum values as well as the dates of each bank’s maximum estimated
net connectedness measures.

We see that while BCA has the largest average net connectedness measure,
BBVA has the largest maximal net connecteness measure, which took place in
2014, after a writedown on a purchase of a US digital bank, followed by SAN,
which happened in July 2019, when it cancelled dividend payments, and then
GS, which took place in 2010 in the wake of the GFC.5 While it is not clear
that specific events triggered the maximum contagion effects for specific banks,
these events provide a narrative for understanding why these contagion effects
reached their peak values.

4.4 Regulatory interventions and contagion

To evaluate the relation between regulatory interventions and banking sector
contagion, we make use of a Feed Forward Neural Network, linking each bank’s

5see https://www.marketwatch.com/story/banco-santander-
cancels-2019-final-dividend-2020-04-03-14852439 for SAN,and
https://archive.nytimes.com/dealbook.nytimes.com/2014/02/20/bbva-buys-banking-start-
up-simple-for-117-million/ for informaiton on BBVA.
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Table 4: GSIB Connectedness: Maximum Values

Bank Max Val Date

BAC 4.966 6-Jun-18

BBVA 8.046 22-Sep-14

BCA 4.124 28-May-13

C 6.494 26-Dec-14

CS 5.074 3-Jan-11

GS 6.564 1-Sep-10

JPM 5.539 22-Jun-18

MS 5.690 16-Nov-18

SAN 7.277 18-Jul-19

WFC 5.423 24-Jun-10

connectedness with its lagged fine history and BIS classification.
The nonlinear feed forward network forms neurons from linear combinations

of the input data by transforming these combination with a logsigmoid function,
as shown in equations (5) through (6). In a shallow network with one hidden
layer, the neurons are then combined in a linear fashion to forecast the dependent
or target variable y.

nk,t = ωk,0 +

i∗∑
i=1

ωk,ixi,t (5)

Nk,t =
1

1 + e−nk,t
(6)

= Σ(nk,t) (7)

yt = γ0 +

k∗∑
k=1

γkNk,t (8)

The symbol Σ represents the sigmoid function, also known as the logit or
logistic function. The appeal of the logsigmoid transform function comes from
its “threshold behavior” which characterizes many types of economic responses
to changes in fundamental variables. For example, if interest rates are already
very low or very high, small changes in this rate will have very little effect on
the decision to purchase an automobile or other consumer durable, for exam-
ple. However within critical ranges between these two extremes, small changes
may signal significant upward or downward movements and therefore create a
pronounced impact on automobile demand.

Furthermore, the shape of the logsigmoid function reflects a kind of learning
behavior. Often used to characterize ”learning by doing”, the function becomes
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increasingly steep until some inflection point. Thereafter the function becomes
increasingly flat up and its slope moves exponentially to zero. Following the
same example, as interest rates begin to increase from low levels, consumers
will judge the probability of a sharp uptick or downtick in the interest rate
based on the currently advertised financing packages. The more experience
they have, up to some level, the more apt they are to interpret this signal as
the time to take advantage of the current interest rate, or the time to postpone
a purchase. The results are markedly different than those experienced at other
points on the temporal history of interest rates. Thus, the nonlinear logsigmoid
function captures a threshold response characterizing “bounded rationality” or
a “learning process” in the formation of expectations.

Kuan and White (1994) describe this threshold feature as the "fundamen-
tal" characteristic of nonlinear response in the neural network paradigm. They
describe it as the "tendency of certain types of neurons to be quiescent of mod-
est levels of input activity, and to become active only after the input activity
passes a certain threshold, while beyond this, increases in input activity have
little further effect.

A multilayered feedforward network would combine the neurons in equation
(10) into a new set of linear combinations, which are, in turn, transformed by a
logsigmoid function, as show in the following system:

nk,t = ωk,0 +

i∗∑
i=1

ωk,ixi,t (9)

Nk,t =
1

1 + e−nk,t
(10)

pl,t = ρl,0 +

k∗∑
k=1

ρl,kNk,t (11)

Pl,t =
1

1 + e−pl,t
(12)

yt = γ0 +

l∗∑
l=1

γlPl,t (13)

In our estimation we employ a deep-learning network with ten neurons in
three hidden layers, with one lag for the three regulatory instruments (the fine
amounts, fine frequency, and the BIS bin classifications). We estimate the model
for the sample beginning in March 2013, when the BIS bin classifications were
implemented for all of the GSIB’s.

Table ?? contains the overall coefficient of determination of the ten regres-
sions as well as its significance level. We see that for four banks, BCA, CS,
SAN, and WFC, the regressions are significant. Table ?? also gives the partial
derivatives, evaluated at the mean values, for the BIS Bin classifications, the
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Fine Amounts and Fine Frequency. For BCA, both the fine amounts and the
BIS Bin classificaitons have expected negative effects on contagion. For CS,
SAN, and WFC, where the regressions are significant, the amount of the fines
appear to have the strongest effects for reducing contagion.

Table 5: Nonlinear Regression of Connectedness on Regulatory Interventions

Partial Derivatives:

Bank Name RSQ P-Val Fine Frequency Fine Amount BIS Bin

BAC 0.007 0.999 0.095 -0.294 -0.012

BBVA 0.006 1.000 0.157 -0.090 -0.011

BCA 0.034 0.001 0.136 -0.206 -0.040

C 0.003 1.000 -0.014 -0.229 -0.010

CS 0.041 0.000 -0.046 -0.753 -0.066

GS 0.001 1.000 -0.039 -0.420 0.093

JPM 0.001 1.000 -0.016 -0.282 0.062

MS 0.002 1.000 0.010 -0.054 0.008

SAN 0.038 0.000 -0.019 -0.159 0.048

WFC 0.242 0.000 0.065 -0.160 0.087

5 FEVD Results on Contagion: CDS Premia

5.1 Normalized CDS premia

Figure 6 pictures the median values of the rate of change of the CDS premia for
the ten banks. We see that the periods of greatest volatility were at the time
of the Global Financial Crisis after 2008, as well as after 2020, the time of the
COVID19 pandemic. However there were also spikes at time of Brexit in 2016
and at the time of the downgrading of US Debt in 2012.

5.2 Full sample estimation results

Figure 7 pictures the net connectedness measures based on full-sample estima-
tion with Elastic Net. This figure shows some consistencies with the connected-
ness measures based on range volatility. In particular, both BAC and BCA have
positive effects on the CDS premia of the banking sector. But in the CDS mar-
ket, JPM and MS have positive outward connectedness, as opposed to negative
connectedness with respect to range volatility.

The directional graph for the CDS premia shows that both BBVA and BCA
are at the center of bivariate clustering. This chart is practically identical to
the bivariate clustering of the range volatility measures.
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Figure 6: Median Rate of Change of the CDS Premia

Figure 7: CDS Net Connectedness, Full Sample Estimation
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Figure 8: CDS Premia Network and Clustering: Full-Sample Estimation

5.3 Results with moving-window estimation

Figure 9 pictures the mean of the net connectedness of the CDS market. As in
the case of the range volatility, we see that BCA stands out as the major source
of outward transmission of risk in this market, based on the mean values of the
rolling-window estimates.

As above, Table 6 pictures the maximum values of the outward connected-
ness as well as timing of these values but for the CDS premia. This table shows
that the largest of the maximum contagion effects, for BAC and JPM, took
place in the wake of the GFC. The third largest of the max values belongs to
BCA. In the CDS market, this contagion effect took place in 2016 in the lead
up to Brexit.

5.4 Regulatory intervention and contagion

Table 7 contains the overall coefficient of determination of the ten regressions
as well as its significance level. We see that for four banks, BAC, BBVA, BCA,
and WFC, the regressions are significant and the regulatory interventions have
the expected negative signs, implying that these interventions reduce the out-
ward contagion effects of this banks under intervention. However for MS, the
coefficients are jointly significant but the partial derivatives, while small, are
positive. We found similar results for range volatility-based measures for BCA
and WFC.
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Figure 9: CDS Net Connectedness: Mean of Moving Window

Table 6: CDS Connectedness: Maximum Values

Name Max Val Date

BAC 5.308 12-Oct-11

BBVA 3.258 23-Sep-19

BCA 4.472 18-Feb-16

C 3.465 11-Jun-09

CS 2.461 8-Nov-19

GS 0.620 12-Mar-20

JPM 4.895 23-Sep-09

MS 2.204 6-Oct-11

SAN 3.903 28-Oct-10

WFC 2.093 3-Oct-11
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Table 7: Nonlinear Regression of Connectedness on Regulatory Interventions

Partial Derivatives

Bank Name RSQ P-Val Fine Frequency Fine Amount BIS Bin

BAC 0.057 0.000 -0.107 -0.202 -0.115

BBVA 0.121 0.000 -0.014 -0.027 -0.013

BCA 0.065 0.000 -0.022 -0.042 -0.022

C 0.004 1.000 -0.039 -0.079 -0.042

CS 0.000 1.000 0.000 0.000 0.000

GS 0.000 1.000 -0.001 -0.003 0.002

JPM 0.000 1.000 -0.001 -0.003 0.002

MS 0.055 0.000 0.004 0.007 0.003

SAN 0.023 0.114 -0.012 -0.027 -0.005

WFC 0.155 0.000 -0.007 -0.747 -0.565

6 ∆Covar Results on Contagion

6.1 ∆Covar statistics for τ = .95

Figure 10 pictures the maximum values of the set of the ten GSIB’s at each
period of the sample, based on the rolling-regression estimation. Similar to the
results based on range volatility, we see that the maximum contagion effects by
particular banks take place at the time of the Global Financial Crisis after 2008,
at the time of the downgrading of US debt in 2012, and after the start of the
COVID19 pandemic in 2020.

Table 8 gives the relevant maximum values as well as the dates of these
values. We see that the maximum values for all of the banks took place shortly
after the start of the Global Financial Crisis in 2008. The top five generators
of systemic risk by this method are SAN and CS, followed by BBVA. SAN and
BBVA are also among the leaders for Net Connectedness based on the range
volatility approach of Diebold and Yilmaz (2014) but under the Range Volatility
approach, the max values come at later dates.

Despite some overlap of two banks appearing among the top five net trans-
mitters of system risk under the two methods, this method measures another
type of risk, namely extreme tail risk in the distribution of returns. Range
volatility and the CDS premia measure less extreme risk.

6.2 Relation to regulatory interventions for τ = .95

The results of the nonlinear regression of the ∆Covar estimates on the regula-
tory instruments appear in Table 9. We see little explanatory power of any of
the instruments for bank intervention. Since all of the regressions are not signif-
icant, the partial derivatives are practically zero from one nonlinear regression
to another. For mitigation contagion under extreme cases of risk, the regulatory
instruments have no significant effects.
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Figure 10: Maximum Values of ∆Covar with Rolling Regression Estimation
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Table 8: ∆Covar Statistics and Dates of Maximum Values

Name Max Value Date

BAC 0.084 20-Jul-09

BBVA 0.167 19-Jan-09

BCA 0.079 18-May-09

C 0.061 24-Oct-08

CS 0.185 16-Feb-09

GS 0.098 18-May-09

JPM 0.104 26-Jan-09

MS 0.124 4-May-09

SAN 0.199 23-Mar-09

WFC 0.129 16-Mar-09
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Table 9: Nonlinear Regression of ∆Covar on Regulatory Interventions

Name RSQ P-val Fine Frequency Fine Amount BIS Bin

BAC 0.009 1.000 0.000 0.000 0.000

BBVA 0.000 1.000 0.000 0.000 0.000

BCA 0.000 1.000 0.000 0.000 0.000

C 0.001 1.000 0.000 0.000 0.000

CS 0.000 1.000 0.000 0.000 0.000

GS 0.002 1.000 0.000 0.000 0.000

JPM 0.000 1.000 0.000 0.000 0.000

MS 0.018 1.000 0.000 0.000 0.000

SAN 0.002 1.000 0.000 0.000 0.000

WFC 0.000 1.000 0.000 0.000 0.000

7 Conclusion

We have examined the rankings of ten GSIB’s based on net connectedness mea-
sure of realized share-price volatility and CDS premia, as well as Conditional
Value at Risk or ∆Covar measure. We found very little overlap between the
first two and the last measure. Only two, SAN and BBVA, appeared among the
leading banks in terms of being a source of system risk.

We also examined how the regulatory interventions affect the degree to which
individual banks transmit risk to other banks or to the banking system as a
whole. For each bank, we examined how individual fines and BIS classifications
of that particular bank, affect its transmission of systemic risk. Under the real-
ized volatility and CDS premia as measures, regulatory measures appear to have
significant effect on the net connectedness of only a few GSIB’s, such as Wells
Fargo and BCA, with the BIS Bin classification having the strongest as well as
dampening negative effects on net risk transmission. For the Conditional Value
at Risk measure, none of the regulatory measures appeared to have significant
effects on any of the GSIB’s.

Our conclusion reinforces the results of Moratis and Sakellaris (2021), who
argue that measures of net connectedness, easily available from market infor-
mation on a daily basis, is a tool which can be implemented by regulators,
and can be applied to banking networks at the regional, national and interna-
tional levels. It can pinpoint bilateral dependencies as well as smaller clusters
of interconnected banks within a wider network. Such adoption can only make
regulatory interventions more effective tools for financial stability.

References

Adrian, T. and M. Brunnermeier (2016). Covar. American Economic Re-
view 106, 1705–1741.

21



Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys (2003). Modeling
and Forecasting Realized Volatility. Econometrica 71, 579–625.

Beckers, S. (1981). Standard deviations implied in option prices as predictors
of future stock price variability. Journal of Banking and Finance 5, 363–381.

Chiang, T. C. and J. Li (2012). Stock returns and risk: Evidence from quantile
regression. Journal of Risk and Financial Management 5, 20–58.

Diebold, F. and K. Yilmaz (2012). Better to give than to receive: Predic-
tive directional measurement of volatility spillovers. International Journal of
Forecasting 28 (1), 57–66.

Diebold, F. and K. Yilmaz (2013). Measuring the dynamics of global business
cycle connectedness. Pier working paper archive, Penn Institute for Economic
Research, Department of Economics, University of Pennsylvania.

Diebold, F. X. and K. Yilmaz (2014). On the network topology of variance
decompositions: Measuring the connectedness of financial firms. Journal of
Econometrics 182 (182), 119–134.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with esti-
mates of the variance of united kingdom inflation. Econometrica 56, 987–
1007.

Garman, M. and M. Klass (1980). On the estimation of security price volatilities
from historical data. Journal of Business 1, 67–78.

Granger, C. (2008). Non-linear models: Where do we go next - time varying
parameter models? Studies in Nonlinear Dynamics and Econometrics 2,
1–11.

Kuan, C.-M. and H. White (1994, September). Adaptive Learning with Non-
linear Dynamics Driven by Dependent Processes. Econometrica 62 (5), 1087–
1114.

Mihai, I. and F. Neagu (2011). CDS and government bond spreads: how infor-
mative are they for financial stability analysis? IFC Bulletin 34, 415–429.

Moratis, G. and P. Sakellaris (2021). Measuring the systemic importance of
banks. Journal of Financial Stability 54.

Rothschild, M. and J. Stiglitz (1970). Increasing risk: I. a definition. Journal
of Economic Theory 2, 225–243.

Zou, H. and T. Hastie (2005). Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 67, 301–320.

22


