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Should Inequality Factor into MP decisions?

“A clear takeaway (...) was the importance of achieving
and sustaining a strong job market, particularly for peo-
ple from low- and moderate-income communities.”—
Jerome H. Powell, speech August 27, 2020

“(...) a faster return to full employment should in turn
contribute to lower future inequality, since we know that
if unemployment lasts too long it can lead to perma-
nent income losses through labour market scarring”.
— Mario Draghi, lecture October 25, 2016
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Should Inequality Factor into MP decisions?

I Study desirable monetary policy in a simple two-agent new
keynesian model, based on Bilbiie (2008), Debortoli and
Gali (2017):
I Rich agent: owns all capital, income composed of after-tax

dividends and wages.
I Poor agent: receives only wages and a transfer from the

government financed by the dividend tax.

I Positive productivity shocks exacerbate initial inequality
through (i) higher profits accrue to rich, and (ii) wages are
tech-biased towards the rich.
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Findings

I Ramsey problem yields an “enlarged” loss function with
terms on consumption inequality and the labor share.

I Optimal policy: a policy that optimally aims to stabilize
inflation and output gaps alone is close to optimal.

I Taylor rules: the central bank should target the labor
share in response to tech shocks.
I This implies lower interest rates following a positive

technology shock
I which improves distributional but also aggregate outcomes.
I Insights carry through beyond tech shocks.
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Contribution

Bilbiie (2008) and Debortoli and Gali (2017), plus:
I we study optimal monetary policy in the presence of

steady state inequality;
I technological bias in wages to match the responses of

consumption of different agents to productivity shocks in
the U.S (De Giorgi and Gambetti, 2017);

I Wages are also rigid, beyond prices; and
I we study implications for alternative Taylor rules.
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Model Overview

Markets

• Final goods

• Financial (bonds, stocks)

• Labor

Households

• Supply labor 

• Receive government transfers  

• Two Types

• Ricardian: mass 1-λ, access financial markets.

• Keynesian: mass λ, do not access financial markets.

Firms

• Transform labor to final good

• Monopolistic competition

• Sticky Prices (Rotemberg)

Policies

• Fiscal:

• Redistributes a share of profits 

from firms to households

• Monetary:

• Optimal monetary policy

• Taylor Rule

Shocks
• TFP with skill biased effect 

on labor income
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Ricardian Agent

I A Ricardian agent, r , solves

max E0

∞∑
t=0

βt

[
ln Crt − χ

N1+φ
t

1 + φ

]

s.t. Crt + brt = brt−1
Rt−1

Πt
+ Yrt



11/37

Keynesian Agent

I A Keynesian agent, k , solves

max E0

∞∑
t=0

βt

[
ln Ckt − χ

N1+φ
t

1 + φ

]
s.t. Ckt = Ykt

I Has no access to financial markets.
I Keynesian agents are effectively hand-to-mouth.
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Supply Side - Labor Market

I Workers assumed to supply the same amount of labor:

w∗t = χYtN
φ
t

φ is the inverse Frisch elasticity, χ governs labor disutility.
w∗ is real wage norm (real wage absent rigidites).
“Trick”: abstract from inequality in labor supply.

I Wages are rigid following Eggertsson et al. (2019)

wt =

(
wt−1

Πt

)ψw

w∗t
1−ψw

where ψw is the degree of nominal wage rigidity.
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Supply Side - Firms

I An intermediate producer j , concave production function

yjt = AtN1−α
jt and demand function yjt =

(
pjt
Pt

)−θp
Yt solves

max
pjt

(1 + Tp) pjtyjt −WtNjt −
ψ

2
Yt

[
pjt

pjt−1
− 1
]2

+

+ β
Crt

Crt+1

{
(1 + Tp) pjt+1yjt+1 −Wt+1Njt+1 −

ψ

2
Yt+1

[
pjt+1

pjt
− 1
]2
}
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Fiscal Policy

I Fiscal Transfers

tkt = (1− τ) dt

trt =
dt − λtkt

1− λ
.

I τ ∈ [0,1], governs steady-state inequality.
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Incomes

I Income is distributed as follows.

Ykt =

(
At

A

)−γ
wtNt − TpYt + tkt

Yrt =
1− λ

(
At
A

)−γ
1− λ

wtNt − TpYt + trt

I γ > 0 generates skill biased tech change.
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Market Clearing

We have the following market clearing conditions.

Yt = λCkt + (1− λ) Crt +
ψp

2
Yt (Πt − 1)2∫

bitdi = 0
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Exogenous Productivity

Standard AR(1) productivity process

At = A expεt

εt = ρεt−1

ε0 = 0.01
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Log-Linearized Equilibrium Conditions

I Equilibrium is
{

Ŷt , Ĉrt , Ĉkt , N̂t , R̂t , Π̂t , ŵt , ŵ∗t , d̂t , t̂rt , t̂kt

}∞
t=0

, given

exogenous process
{

Ât

}∞
t=0

such that

Ĉrt = Et Ĉrt+1 − R̂t + Et Π̂t+1 Ŷt = λ
Ck

Y
Ĉkt + (1− λ)

Cr

Y
Ĉrt

ŵt = φN̂t + Ŷt ŵt = (1− ψw )
(

ŵ∗
t − Π̂t

)
+ ψw ŵt−1

d̂t = t̂kt d̂t =
(1− λ) t r

d
t̂rt +

λtk

d
t̂kt

Ck

wN
Ĉkt +

TpY

wN
Ŷt −

tk

wN
t̂kt = −γÂt + ŵt + N̂t Π̂t = βEt Π̂t+1 +

θp

ψp

(
ŵt +

α

1− α
Ŷt −

1

1− α
Ât

)
(
1 + Tp

)
Ŷt =

d

Y
d̂t +

wN

Y

(
ŵt + N̂t

)
Ŷt = Ât + (1− α) N̂t

and a condition for monetary policy.
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Calibration

Value Concept Source

α 0.25 Profits Share Galí (2015)
β 0.9925 Discount Factor Galí (2015)
λ 0.4 Share of Keynesian Coenen et al. (2012)
χ 1 Disutility of Labor Galí (2015)
φ 1 Frisch Elasticity Galí (2015)
θp 9 Elasticity Intermediate Goods Galí (2015)
ψp 372.8 Rotemberg Cost Debortoli and Gali (2017)
ψw 0.75 Wage Rigidity Smets and Wouters (2007)
ρ 0.9 Persistence Of Tech Shock Galí (2015)
τ 0.93 Degree of Redistribution SCF, match ratio of non-labor income
γ 2.21 Tech Bias TR + De Giorgi and Gambetti (2017)
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Ramsey optimal monetary policy (Rotemberg and
Woodford, 1997)

I Problem of a central bank that equally weights all agents:

W = E0

∞∑
t=0

βt

[
λ ln Ckt + (1− λ) ln Crt − χ

N1+φ
t

1 + φ

]

I If τ > 0, 2nd order approximation as in Woodford, or Galì,
yields a linear term.

I Bilbiie (2008) and Debortoli and Gali (2017) assume that
away with no inequality in steady-state.
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Welfare approximation under a distorted steady-state

I Use Benigno and Woodford (2005): replace linear term by
using a second order approximation of the Phillips curve

W ≈ −1
2

∞∑
t=0

βt{WΠΠ̂2
t + WY

(
Ŷt − Ât

)2
+ W∆c ∆̂2

ct︸︷︷︸
=(Ĉrt−Ĉkt )2

+

WLS

(
L̂St − L̂S

∗
t

)2
}+ T0 + t.i.p.

I T0 = f
(

Ŷ0, Π̂0, Ĉr0

)
has linear terms and gives an initial

condition
I “Timeless Commitment”: the new rule applies from next

period on, or the central bank wants to maintain a past
commitment.

I The labor share shows up: L̂St = ŵt + N̂t − Ŷt

Analytical expression for weights
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Welfare weights vary with steady-state inequality
Inflation Gap
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How important are the “new” components?

I Take a central bank with a dual mandate. It maximizes:

W = −1
2

∞∑
t=0

βt
{

WΠΠ̂2
t +

1 + φ

1− α

(
Ŷt − Ât

)2
}

where T0 is constrained to be the same as in fully optimal
policy.

IRF
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Fully optimal monetary policy is not that better

Figure: Consumption-equivalent welfare gain of moving from
RANK-optimal to fully optimal policy
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Takeaway from optimal policy

I Ramsey problem in our TANK model implies changes to
familiar terms (on inflation) and adds new terms (on
consumption inequality and labor share)

I However, the conduct of monetary policy is not much
changed by these if the central bank is pursuing a
RANK-optimal policy to begin with

I Any gains come from adding consumption inequality
weight in the welfare function
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What about including inequality in Taylor Rules?

I Consider a central bank conducting MP using an
augmented Taylor rule:

R̂t = φπΠ̂t + φy

(
Ŷt − Ât

)
+ φc

(
Ĉrt − Ĉkt

)
+ φLS

(
L̂St

)
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Augmented Taylor rules fare better

Figure: Welfare under augmented Taylor rules
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Augmented rules are better for different reasons
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Takeaway from taylor rules under TFP shock

I Augmented rules generate welfare gains relative to
standard Taylor rules, either consumption inequality or
labor share targeting

I The gains across the two types are similar, but targeting
the labor share seems more robust

I Moreover, labor share targeting also generates less volatile
inflation, which is always the most important gap to
stabilize
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Ex-ante evaluation with broad set of shocks leads to
similar conclusions

Figure: Welfare loss and policy reaction parameters
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Targeting the labor share dampens losses from
inequality and is robust

Figure: Welfare loss as function of inequality parameters across
Taylor rules
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Conclusion

I Should inequality change the conduct of monetary policy?

I We study this question within a stylized model with
steady-state inequality and tech-biased wages.

I The answer is nuanced

I Under optimal policy, only small welfare gains from
factoring in inequality, even for high steady-state inequality
and tech-biased wages.

I Under Taylor rules,
I explicitly targeting the labor share is welfare increasing vs

standard rules
I AND actually superior to targeting consumption inequality.



35/37

Extra slides
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Welfare Weights

Define Ck
Y

= w N
Y
− Tp + (1− τ) d

Y
≡ Ω (τ)

WΠ = ψp

{
1− λ (1− Ω (τ))

1− λΩ (τ)

[
1− 1− τ

Ω (τ)

]}
W∆c = λΩ (τ) (1− λΩ (τ))

WY =
1 + φ

1− α

WLS =
λ (1− Ω (τ))

(1− λΩ (τ))2

(
(1− α) τ

Ω (τ)

)2

Note: Weights are a function of τ but not γ

Go back
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Figure: IRFs: Optimal vs RANK-Optimal Policy, with Wage Rigidity
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