

# State-Dependent Exchange Rate Pass-Through

Yan Carrière-Swallow Melih Firat

Davide Furceri Daniel Jiménez

BSP INTERNATIONAL RESEARCH FAIR, MANILA

June 13, 2023

# WORKING PAPER

### Now available as IMF Working Paper 23/86

Scan QR code to access the <a href="IMF Working Paper">IMF Working Paper</a>:

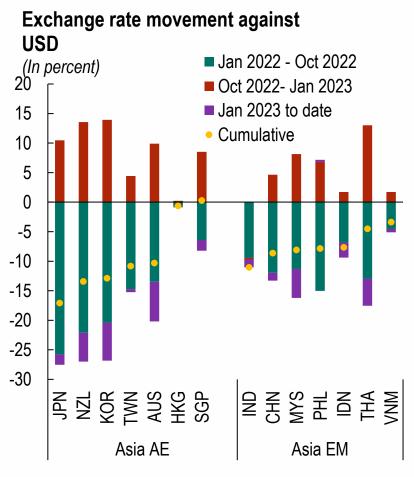


### INTERNATIONAL MONETARY FUND

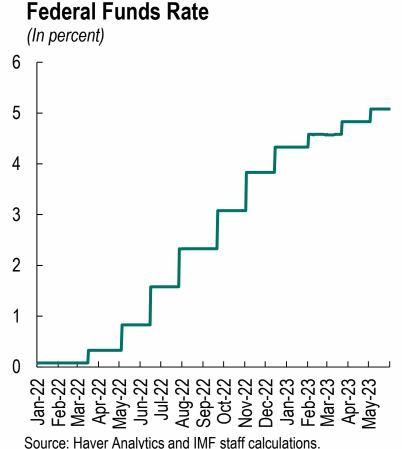
## State-Dependent Exchange Rate Pass-Through

Yan Carrière-Swallow, Melih Firat, Davide Furceri, and Daniel Jiménez

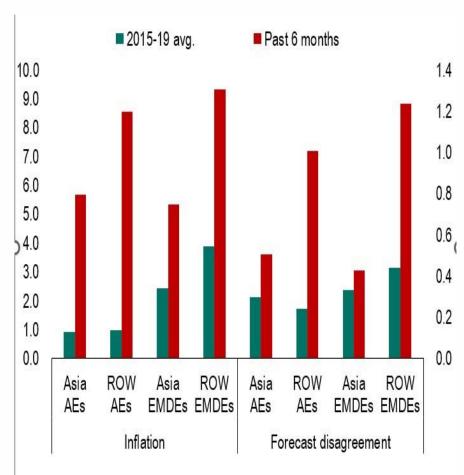
WP/23/86


IMF Working Papers describe research in progress by the author(s) and are published to elicit comments and to encourage debate. The views expressed in IMF Working Papers are those of the author(s) and do not necessarily represent the views of the IMF, its Executive Board or IMF management.

**2023** APR




### **Motivation**


Strong exchange rate fluctuations in local currencies against the USD...



...caused by monetary policy tightening cycle in the US...



...amid elevated inflation and uncertainty.

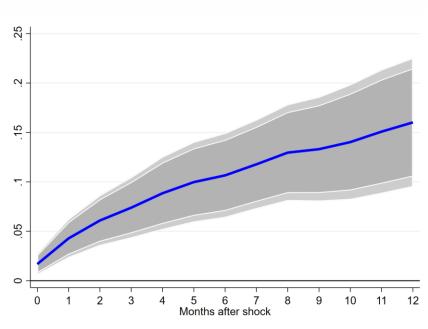


### **Research questions**

- Motivated with these developments,
  - We are documenting exchange rate pass-through into consumer and import prices, and inflation expectations:
- How does it change over time, and in periods of high inflation and uncertainty?
- How does it vary across countries and examine the role of country characteristics?
- And when are they driven by US monetary policy tightening?

### **Empirical approach**

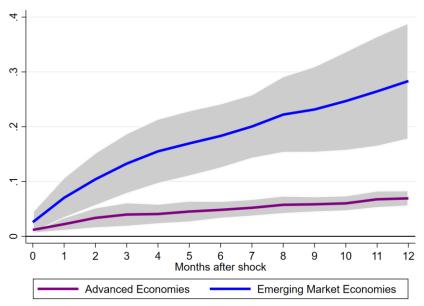
Baseline:


$$p_{i,t+h} - p_{i,t-1} = \beta_h \Delta E R_{i,t} + \sum_{l=0}^{12} \theta_l^Z Z_{i,t-l} + \delta_i + \delta_t + \epsilon_{i,t}$$

- $\triangleright \beta_h$ : Response of prices to a 1% increase (depreciation) in local currency/USD at horizon h
- ▶ $p_{i,t}$ : Log CPI (or log import price index; log inflation expectations)
- $ightharpoonup \Delta ER_{i,t}$ : Log change in bilateral exchange rate (local currency/USD)
- $\triangleright Z_{i,t}$ : Output gap, lag inflation, lag change in exchange rate
- State/country-dependent:  $p_{i,t+h} p_{i,t-1} = \beta_h^{g} X_g \times \Delta E R_{i,t} + \sum_{l=0}^{12} \theta_l^{z} Z_{i,t-l} + \delta_i + \delta_t + \epsilon_{i,t}$ 
  - $X_q$  country/time indicator dummy
  - <u>Sample</u> (46 countries)—larger unbalanced sample as robustness check
    - 28 AEs and 18 EMs for the period 1990m1-2022m10

### Significant pass-through—high heterogeneity across countries

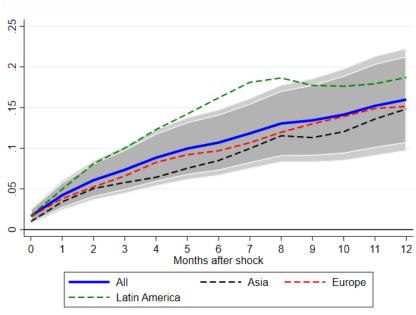
10% depreciation implies a 1.6% rise in consumer prices in 12-month


**Average Exchange Rate Pass-Through** 



Sources: Haver Analytics; IMF staff calculations.

..with pass-through being lower in AEs than EMs


Exchange Rate Pass-Through Difference between AEs and EMs



Sources: Haver Analytics; IMF staff calculations.

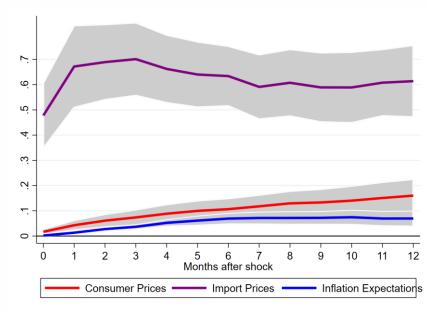
...and the pass-through variation across geographical regions is limited.

Exchange rate pass-through across different regions

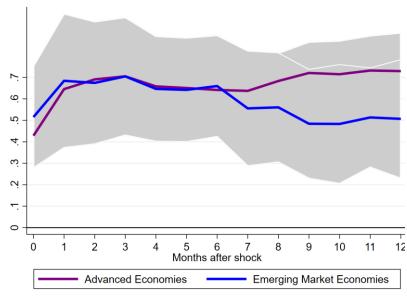


### ...especially for the impacts on inflation expectations

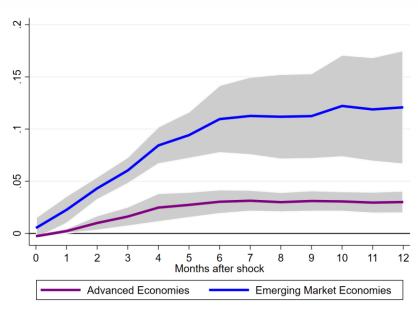
Instant pass-through into import prices, slowly building for consumer prices and inflation expectations...


**Pass-Through into Different Variables** 

Pass-through into import prices are broadly similar between AEs and EMs, but..


Pass-Through into Import Prices: AE vs EM

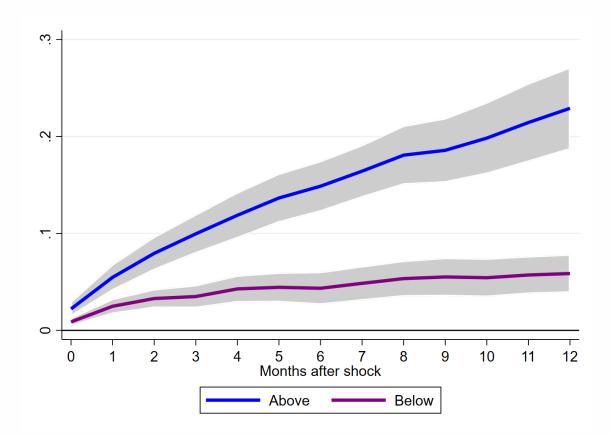
larger effects on inflation expectations in EMs


Pass-Through into Inflation Expectations:
AE vs EM



Sources: Haver Analytics; IMF staff calculations.

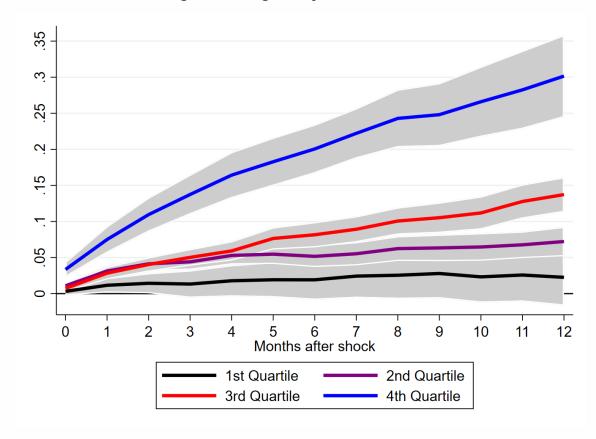



Sources: Haver Analytics; IMF staff calculations.



### Larger pass-through during high inflation

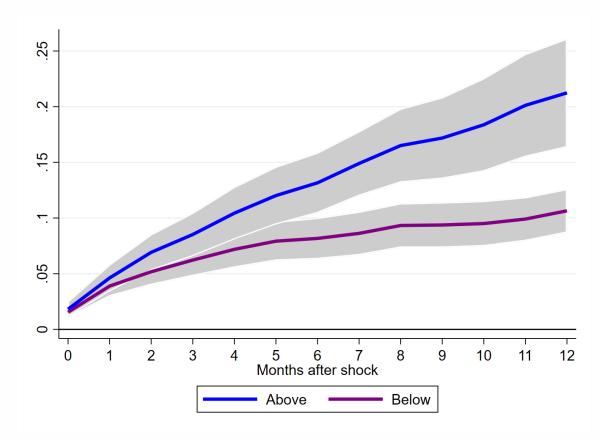
A depreciation in local currency/USD has more pressure on prices when inflation is above median...


Pass-Through Heterogeneity with Inflation: Low vs High



Sources: Haver Analytics; IMF staff calculations.

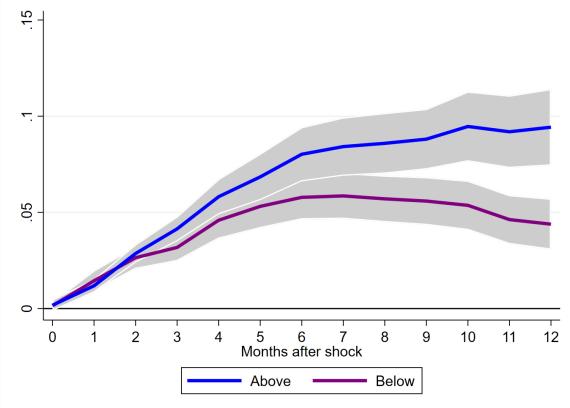
...and pass-through is even much higher when inflation exceeds a certain threshold (4<sup>th</sup> Quartile).


Pass-Through Heterogeneity with Inflation: Quartiles



### Larger pass-through during high uncertainty...

A depreciation in local currency/USD has more pressure on consumer prices when uncertainty is higher than median...

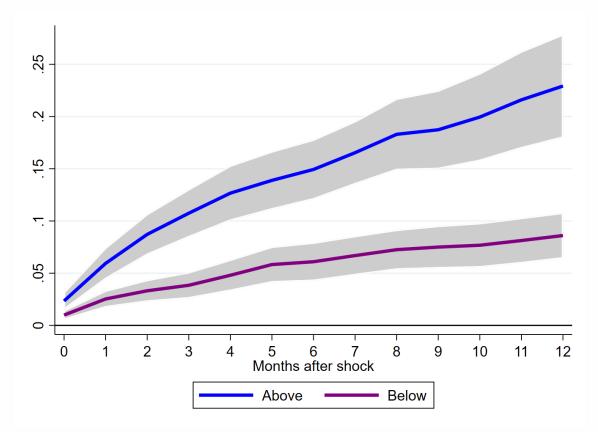

Pass-Through Heterogeneity with Uncertainty: Consumer Prices



Sources: Haver Analytics; IMF staff calculations.

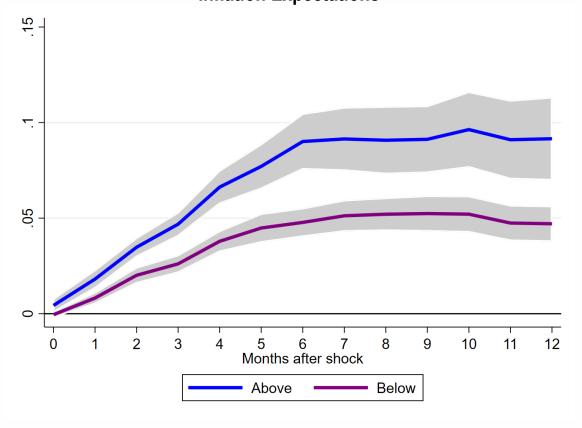
...and similar result for pass-through into inflation expectation.

Pass-Through Heterogeneity with Uncertainty: Inflation Expectations




### Role of inflation anchoring determines the pass-through level

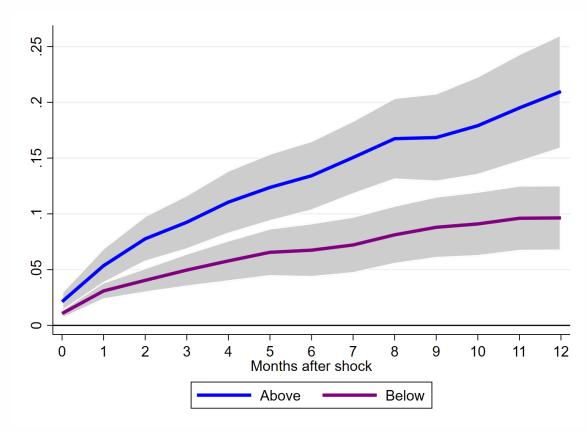
Stronger consumer prices and inflation expectations pass-through for countries with higher disagreement on inflation expectations.


Pass-Through Heterogeneity with Inflation Uncertainty:

Consumer Prices



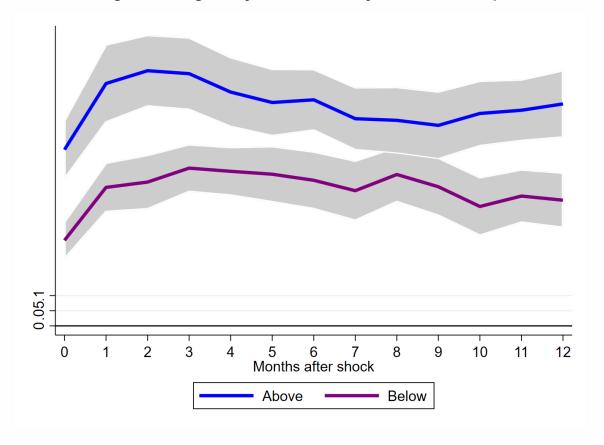
Sources: Haver Analytics; IMF staff calculations.


Pass-Through Heterogeneity with Inflation Uncertainty: Inflation Expectations



### ...and USD invoice share of countries.

Exchange rate pass-through on consumer prices is higher in countries with higher USD invoice share of imports...

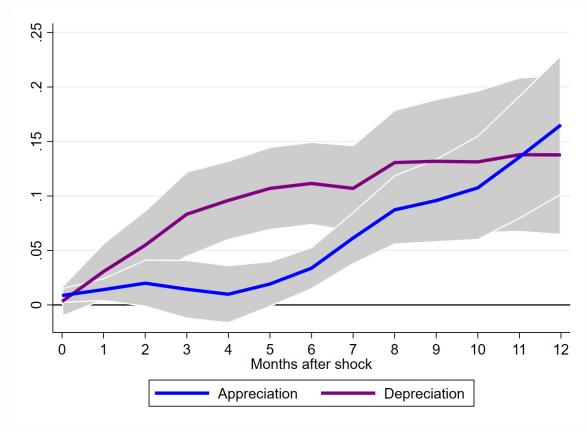

Pass-Through Heterogeneity with Currency of Invoice: Consumer Prices



Sources: Haver Analytics; IMF staff calculations.

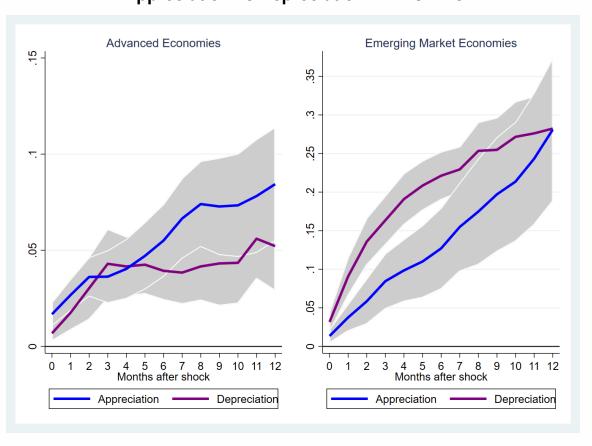
...and the difference is also apparent when we compare the passthrough into import prices.

Pass-Through Heterogeneity with Currency of Invoice: Import Prices




# Pass-through materializes faster following depreciations than appreciations

Pass-through from depreciations are more instant than from appreciations but price responses converge at 12-month...


...but the picture is valid only for EMs.

### **Appreciation vs Depreciation**



Sources: Haver Analytics; IMF staff calculations.

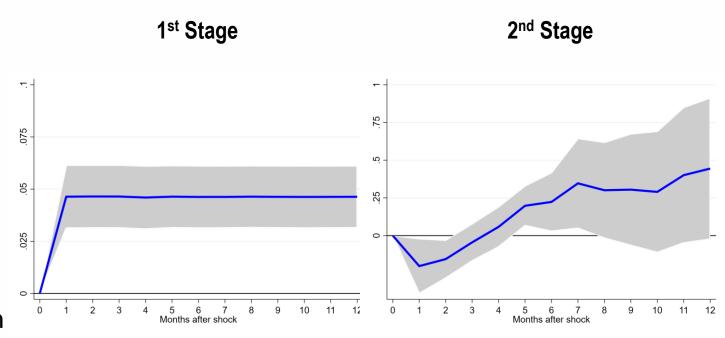
**Appreciation vs Depreciation: AE vs EMs** 



### Sources of exchange rate fluctuations

- Exchange rate fluctuations are driven by different factors (Forbes et al., 2018)
- Instrument ER fluctuations using a diff-in-diff IV approach (Nunn and Qian, 2014)
  - $Instrument_{i,t} = CountryCharacteristic_i \times Shock_t$
  - Shock<sub>t</sub>: U.S. monetary policy shock, CountryCharacteristic<sub>i</sub>: Chinn-Ito index of country i
- First-stage

$$\Delta ER_{i,t} = \beta_h^1 Instrument_{i,t} + \sum_{l=0}^{12} \theta_l^Z Z_{i,t-l} + \delta_i + \delta_t + \epsilon_{i,t}$$


Second-stage

$$p_{i,t+h} - p_{i,t-1} = \beta_h^2 \Delta \widehat{ER}_{i,t} + \sum_{l=0}^{12} \theta_l^Z Z_{i,t-l} + \delta_i + \delta_t + \epsilon_{i,t}$$

### U.S. monetary policy shock & capital account openness

- 1st-stage implies, on average, a depreciation following an exogenous U.S. monetary policy tightening (Jarocinski-Karadi)
  - Larger depreciation for countries with more open capital account (Kalemli-Ozcan 2019)
- F-stats from the 1<sup>st</sup> stage suggest the instrument is strong
- 2<sup>nd</sup>-stage suggests a strong pass-through
  - The level is much higher than the passthrough with OLS estimations; consistent with evidence in Forbes et al., 2018.

**Shock Dependent Pass-Through: Role of U.S. Monetary Policy Shock** 



Source: U.S. monetary policy shocks are from Jarocinski and Karadi (2022). Chinn-Ito indexes are from Chinn, Menzie D. and Hiro Ito (2006). IMF staff calculations.

Note: Kleibergen-Paap F-stat equals 11.1. SEs are clustered at country and CI are at 68 percent.

### **Summing up**

- Average pass-through is consistent with typical estimates in the literature...
- ...but pass-through is likely to be larger *now* given the high inflation and uncertainty, and the fact that large depreciations are mainly determined by U.S. monetary tightening
  - Calls for revisiting the exchange rate pass-through literature,
  - Understanding which factors raises responses of prices to the exchange rate fluctuations
- Pass-through and risk of de-anchoring of inflation expectations are larger for EMs and countries with weaker monetary policy frameworks
  - Strengthening the monetary policy framework would contain the pass-through and mitigate risks highlighted in IPF framework

# EXTRA SLIDES

### **Country sample**

| Advanced Economies |                 | Emerging I  | <b>Emerging Market Economies</b> |  |
|--------------------|-----------------|-------------|----------------------------------|--|
| Australia          | Japan           | Argentina   | Malaysia                         |  |
| Austria            | Korea           | Armenia     | Mexico                           |  |
| Belgium            | Latvia          | Brazil      | Peru                             |  |
| Canada             | Lithuania       | Bulgaria    | Philippines                      |  |
| Cyprus             | Netherlands     | Chile       | Poland                           |  |
| Czech Republic     | New Zealand     | China       | Romania                          |  |
| Denmark            | Portugal        | El Salvador | Sri Lanka                        |  |
| Estonia            | Singapore       | Hungary     | Thailand                         |  |
| Finland            | Slovak Republic | India       | Turkey                           |  |
| France             | Slovenia        | Indonesia   | Ukraine                          |  |
| Germany            | Spain           |             |                                  |  |
| Greece             | Sweden          |             |                                  |  |
| Hong Kong SAR      | Switzerland     |             |                                  |  |
| Ireland            | United Kingdom  |             |                                  |  |
| Italy              |                 |             |                                  |  |

### **Country groups by disagreement**

- Country level inflation forecast disagreement measures follow Brito, Carrière-Swallow and Gruss (2018).
  - Their measurement is based on surveys of professional forecasters collected by Consensus Economics
  - Inflation forecast disagreement level for each country is calculated as interquartile range in forecasts across individuals
- Using their disagreement measurements, we separate countries in our sample into 4 quartiles using 25<sup>th</sup> percentile, median and 75<sup>th</sup> percentiles

| Country Groups by Disagreement Low High |                          |                 |               |
|-----------------------------------------|--------------------------|-----------------|---------------|
| Group 1                                 | Group 2                  | Group 3         | Group 4       |
| Austria                                 | Australia                | Hungary         | Argentina     |
| Canada                                  | Belgium                  | Ireland         | Armenia       |
| Denmark                                 | Chile                    | Korea           | Brazil        |
| Finland                                 | Cyprus                   | Lithuania       | Bulgaria      |
| France                                  | Czech Republic           | Malaysia        | China         |
| Germany                                 | Greece                   | Mexico          | Estonia       |
| Italy                                   | New Zealand              | Peru            | Hong Kong SAR |
| Japan                                   | Slovenia                 | Philippines     | India         |
| Netherlands                             | Sweden                   | Poland          | Indonesia     |
| Portugal                                | Taiwan Province of China | Singapore       | Latvia        |
| Spain                                   | United Kingdom           | Slovak Republic | Romania       |
| Switzerland                             |                          |                 | Thailand      |



### **Inflation statistics**

- We calculate y/y change in log CPI for each month in every country.
- Then we separate country-time observations into four groups (quartiles) using the cross-country statistics from the table
  - Very High Inflation (4<sup>th</sup> Quartile): > 75<sup>th</sup> percentile (4.25%)
  - High Inflation (3<sup>rd</sup> Quartile): between median (2.38%) and 75<sup>th</sup> percentile
  - Low Inflation (2<sup>nd</sup> Quartile): between 25<sup>th</sup> percentile (1.17%) and median
  - Very Low Inflation (1<sup>st</sup> Quartile): < 25<sup>th</sup> percentile
- After assigning each country-time observation into a group, we estimate local projections to examine the differential responses across different groups.

| Inflation Statistics        |       |  |  |
|-----------------------------|-------|--|--|
| 25 <sup>th</sup> percentile | 1.17% |  |  |
| Median                      | 2.38% |  |  |
| 75 <sup>th</sup> percentile | 4.25% |  |  |
| Mean                        | 4.05% |  |  |
| Standard Deviation          | 7.38% |  |  |

<u>Back</u>

### **USD** invoice share statistics

- Using the annual USD invoicing share of imports from Boz et al. (2022)
  - First, we calculate the average USD invoicing share for each country
  - Then, we separate countries into Low vs
     High Invoice groups if the USD invoice
     share of country is below or above the
     cross-country median
  - Countries are also separated into quartiles to examine the further nonlinearities

| Invoice Stats      |        | Back |  |
|--------------------|--------|------|--|
| 25th               | 23.00% |      |  |
| Median             | 32.54% |      |  |
| 75th               | 72.26% |      |  |
| Mean               | 44.08% |      |  |
| Standard Deviation | 25.76% |      |  |

| Country Groups by USD Invoice Share |             |                |                                |  |  |
|-------------------------------------|-------------|----------------|--------------------------------|--|--|
| L                                   | ow          | High           |                                |  |  |
| Group 1                             | Group 2     | Group 3        | Group 4                        |  |  |
| Austria                             | Slovenia    | Armenia        | Argentina                      |  |  |
| Belgium                             | Spain       | Australia      | Brazil                         |  |  |
| Czech Republic                      | Bulgaria    | Cyprus         | Chile                          |  |  |
| Estonia                             | Denmark     | Greece         | India                          |  |  |
| France                              | Finland     | Japan          | Indonesia                      |  |  |
| Germany                             | Ireland     | Lithuania      | Korea                          |  |  |
| Hungary                             | Italy       | New Zealand    | Malaysia                       |  |  |
| Latvia                              | Netherlands | Thailand       | Peru                           |  |  |
| Portugal                            | Poland      | Turkey         | Philippines Taiwan Province of |  |  |
| Romania                             | Sweden      | Ukraine        | China                          |  |  |
| Slovak Republic                     | Switzerland | United Kingdom |                                |  |  |

### **Country groups by uncertainty**

- We use monthly uncertainty indexes from Ahir, Bloom and Furceri (2022)
  - They calculate the country-time varying uncertainty indexes using the word "uncertainty" in the Economist Intelligence Unit country reports.
- Then, we separate each country time observation into quartiles using 25<sup>th</sup> percentile, median and 75<sup>th</sup> percentile of cross-country distribution.
- After separating country-time observations into groups we estimate local projections to examine the differential responses across different groups

